Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.992

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,0,1,2,2,2,1,0,0,0,0,0,0,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.992']
Arrow polynomial of the knot is: 8*K1**3 - 6*K1**2 - 6*K1*K2 - 3*K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.237', '6.602', '6.956', '6.986', '6.992', '6.1052', '6.1059']
Outer characteristic polynomial of the knot is: t^7+53t^5+38t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.992']
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 1616*K1**4 + 64*K1**3*K2*K3 - 352*K1**3*K3 - 256*K1**2*K2**4 + 896*K1**2*K2**3 - 6000*K1**2*K2**2 - 352*K1**2*K2*K4 + 8728*K1**2*K2 - 272*K1**2*K3**2 - 5988*K1**2 + 768*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7056*K1*K2*K3 + 560*K1*K3*K4 + 24*K1*K4*K5 - 64*K2**6 + 96*K2**4*K4 - 1528*K2**4 - 800*K2**2*K3**2 - 72*K2**2*K4**2 + 1312*K2**2*K4 - 3882*K2**2 + 512*K2*K3*K5 + 32*K2*K4*K6 + 8*K3**2*K6 - 1972*K3**2 - 342*K4**2 - 80*K5**2 - 6*K6**2 + 4452
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.992']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73360', 'vk6.73389', 'vk6.73523', 'vk6.73566', 'vk6.73718', 'vk6.73837', 'vk6.74250', 'vk6.74878', 'vk6.75329', 'vk6.75532', 'vk6.75839', 'vk6.76427', 'vk6.78244', 'vk6.78315', 'vk6.78493', 'vk6.78634', 'vk6.78829', 'vk6.79298', 'vk6.80067', 'vk6.80099', 'vk6.80217', 'vk6.80264', 'vk6.80398', 'vk6.80763', 'vk6.81946', 'vk6.82673', 'vk6.84741', 'vk6.85037', 'vk6.85155', 'vk6.86517', 'vk6.87355', 'vk6.89420']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5O6U3O5U4U2U6
R3 orbit {'O1O2O3O4U1U5O6U3O5U4U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U1O6U2O5U6U4
Gauss code of K* O1O2O3U4U2U5U1O4O6U3O5U6
Gauss code of -K* O1O2O3U4O5U1O4O6U3U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 1 0 2],[ 3 0 3 1 2 2 3],[ 0 -3 0 0 1 -1 2],[ 0 -1 0 0 0 0 1],[-1 -2 -1 0 0 -1 0],[ 0 -2 1 0 1 0 2],[-2 -3 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 0 0 0 -3],[-2 0 0 -1 -2 -2 -3],[-1 0 0 0 -1 -1 -2],[ 0 1 0 0 0 0 -1],[ 0 2 1 0 0 1 -2],[ 0 2 1 0 -1 0 -3],[ 3 3 2 1 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,0,3,0,1,2,2,3,0,1,1,2,0,0,1,-1,2,3]
Phi over symmetry [-3,0,0,0,1,2,0,1,2,2,2,1,0,0,0,0,0,0,1,1,1]
Phi of -K [-3,0,0,0,1,2,0,1,2,2,2,1,0,0,0,0,0,0,1,1,1]
Phi of K* [-2,-1,0,0,0,3,1,0,0,1,2,0,0,1,2,-1,0,0,0,1,2]
Phi of -K* [-3,0,0,0,1,2,1,2,3,2,3,0,0,0,1,1,1,2,1,2,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2+23w^2z+31w
Inner characteristic polynomial t^6+39t^4+15t^2+1
Outer characteristic polynomial t^7+53t^5+38t^3+6t
Flat arrow polynomial 8*K1**3 - 6*K1**2 - 6*K1*K2 - 3*K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 96*K1**4*K2 - 1616*K1**4 + 64*K1**3*K2*K3 - 352*K1**3*K3 - 256*K1**2*K2**4 + 896*K1**2*K2**3 - 6000*K1**2*K2**2 - 352*K1**2*K2*K4 + 8728*K1**2*K2 - 272*K1**2*K3**2 - 5988*K1**2 + 768*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7056*K1*K2*K3 + 560*K1*K3*K4 + 24*K1*K4*K5 - 64*K2**6 + 96*K2**4*K4 - 1528*K2**4 - 800*K2**2*K3**2 - 72*K2**2*K4**2 + 1312*K2**2*K4 - 3882*K2**2 + 512*K2*K3*K5 + 32*K2*K4*K6 + 8*K3**2*K6 - 1972*K3**2 - 342*K4**2 - 80*K5**2 - 6*K6**2 + 4452
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact