Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.982

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,0,2,3,4,0,0,2,1,0,1,0,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.982']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 6*K1*K2 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.311', '6.528', '6.536', '6.817', '6.982', '6.984', '6.1284']
Outer characteristic polynomial of the knot is: t^7+50t^5+62t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.982']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 1280*K1**4*K2 - 2768*K1**4 + 480*K1**3*K2*K3 + 32*K1**3*K3*K4 - 992*K1**3*K3 - 192*K1**2*K2**4 + 1056*K1**2*K2**3 - 7840*K1**2*K2**2 - 1408*K1**2*K2*K4 + 10816*K1**2*K2 - 368*K1**2*K3**2 - 144*K1**2*K4**2 - 7516*K1**2 + 416*K1*K2**3*K3 - 1152*K1*K2**2*K3 - 384*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 9936*K1*K2*K3 + 1920*K1*K3*K4 + 304*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 1368*K2**4 - 32*K2**3*K6 - 272*K2**2*K3**2 - 24*K2**2*K4**2 + 2360*K2**2*K4 - 5868*K2**2 + 488*K2*K3*K5 + 48*K2*K4*K6 + 16*K3**2*K6 - 3040*K3**2 - 1250*K4**2 - 228*K5**2 - 28*K6**2 + 6128
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.982']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11434', 'vk6.11731', 'vk6.12748', 'vk6.13093', 'vk6.20332', 'vk6.21674', 'vk6.27635', 'vk6.29180', 'vk6.31181', 'vk6.31524', 'vk6.32349', 'vk6.32768', 'vk6.39057', 'vk6.41315', 'vk6.45813', 'vk6.47485', 'vk6.52187', 'vk6.52446', 'vk6.53018', 'vk6.53336', 'vk6.57203', 'vk6.58419', 'vk6.61816', 'vk6.62943', 'vk6.63753', 'vk6.63865', 'vk6.64181', 'vk6.64369', 'vk6.66810', 'vk6.67679', 'vk6.69449', 'vk6.70172']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U4O5U2O6U3U5U6
R3 orbit {'O1O2O3O4U1U4O5U2O6U3U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U2O5U3O6U1U4
Gauss code of K* O1O2O3U4U5U1U6O4O6U2O5U3
Gauss code of -K* O1O2O3U1O4U2O5O6U5U3U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 0 1 1 2],[ 3 0 2 3 1 2 1],[ 1 -2 0 1 0 2 2],[ 0 -3 -1 0 0 1 2],[-1 -1 0 0 0 0 0],[-1 -2 -2 -1 0 0 1],[-2 -1 -2 -2 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -2 -2 -1],[-1 0 0 0 0 0 -1],[-1 1 0 0 -1 -2 -2],[ 0 2 0 1 0 -1 -3],[ 1 2 0 2 1 0 -2],[ 3 1 1 2 3 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,1,2,2,1,0,0,0,1,1,2,2,1,3,2]
Phi over symmetry [-3,-1,0,1,1,2,0,0,2,3,4,0,0,2,1,0,1,0,0,0,1]
Phi of -K [-3,-1,0,1,1,2,0,0,2,3,4,0,0,2,1,0,1,0,0,0,1]
Phi of K* [-2,-1,-1,0,1,3,0,1,0,1,4,0,0,0,2,1,2,3,0,0,0]
Phi of -K* [-3,-1,0,1,1,2,2,3,1,2,1,1,0,2,2,0,1,2,0,0,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+34t^4+21t^2+1
Outer characteristic polynomial t^7+50t^5+62t^3+8t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 6*K1*K2 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -384*K1**4*K2**2 + 1280*K1**4*K2 - 2768*K1**4 + 480*K1**3*K2*K3 + 32*K1**3*K3*K4 - 992*K1**3*K3 - 192*K1**2*K2**4 + 1056*K1**2*K2**3 - 7840*K1**2*K2**2 - 1408*K1**2*K2*K4 + 10816*K1**2*K2 - 368*K1**2*K3**2 - 144*K1**2*K4**2 - 7516*K1**2 + 416*K1*K2**3*K3 - 1152*K1*K2**2*K3 - 384*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 9936*K1*K2*K3 + 1920*K1*K3*K4 + 304*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 1368*K2**4 - 32*K2**3*K6 - 272*K2**2*K3**2 - 24*K2**2*K4**2 + 2360*K2**2*K4 - 5868*K2**2 + 488*K2*K3*K5 + 48*K2*K4*K6 + 16*K3**2*K6 - 3040*K3**2 - 1250*K4**2 - 228*K5**2 - 28*K6**2 + 6128
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact