Gauss code |
O1O2O3O4U1U3O5U4O6U5U6U2 |
R3 orbit |
{'O1O2O3O4U1U3O5U4O6U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U6O5U1O6U2U4 |
Gauss code of K* |
O1O2O3U4U3U5U6O4O5U1O6U2 |
Gauss code of -K* |
O1O2O3U2O4U3O5O6U4U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 1 0 1],[ 3 0 3 1 2 1 0],[-1 -3 0 -1 0 0 1],[ 0 -1 1 0 1 1 0],[-1 -2 0 -1 0 1 1],[ 0 -1 0 -1 -1 0 1],[-1 0 -1 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 0 -3],[-1 0 1 0 1 -1 -2],[-1 -1 0 -1 -1 0 0],[-1 0 1 0 0 -1 -3],[ 0 -1 1 0 0 -1 -1],[ 0 1 0 1 1 0 -1],[ 3 2 0 3 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,0,3,-1,0,-1,1,2,1,1,0,0,0,1,3,1,1,1] |
Phi over symmetry |
[-3,0,0,1,1,1,1,1,0,2,3,-1,1,-1,0,0,1,1,-1,-1,0] |
Phi of -K |
[-3,0,0,1,1,1,2,2,1,2,4,-1,0,0,1,1,2,0,0,-1,-1] |
Phi of K* |
[-1,-1,-1,0,0,3,-1,-1,0,1,4,0,1,0,1,2,0,2,-1,2,2] |
Phi of -K* |
[-3,0,0,1,1,1,1,1,0,2,3,-1,1,-1,0,0,1,1,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
3z^2+23z+35 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+23w^2z+35w |
Inner characteristic polynomial |
t^6+22t^4+25t^2+1 |
Outer characteristic polynomial |
t^7+34t^5+77t^3+7t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 6*K1*K2 - 3*K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial |
-64*K1**6 + 992*K1**4*K2 - 3488*K1**4 + 352*K1**3*K2*K3 - 896*K1**3*K3 - 192*K1**2*K2**4 + 864*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5088*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 448*K1**2*K2*K4 + 10184*K1**2*K2 - 832*K1**2*K3**2 - 32*K1**2*K3*K5 - 48*K1**2*K4**2 - 6308*K1**2 + 256*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 1760*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7480*K1*K2*K3 - 32*K1*K2*K4*K5 + 1352*K1*K3*K4 + 40*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 1216*K2**4 - 32*K2**3*K6 - 512*K2**2*K3**2 - 40*K2**2*K4**2 + 1552*K2**2*K4 - 4818*K2**2 + 328*K2*K3*K5 + 32*K2*K4*K6 - 2244*K3**2 - 548*K4**2 - 40*K5**2 - 6*K6**2 + 5042 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{6}, {3, 5}, {1, 4}, {2}]] |
If K is slice |
False |