Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,0,2,3,3,-1,1,1,1,1,0,-1,0,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.973'] |
Arrow polynomial of the knot is: -10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.574', '6.593', '6.604', '6.649', '6.650', '6.673', '6.690', '6.783', '6.973', '6.985', '6.1033', '6.1035'] |
Outer characteristic polynomial of the knot is: t^7+56t^5+77t^3+10t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.973'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 384*K1**4*K2**2 + 704*K1**4*K2 - 3488*K1**4 + 256*K1**3*K2*K3 - 544*K1**3*K3 + 704*K1**2*K2**3 - 7520*K1**2*K2**2 - 384*K1**2*K2*K4 + 9992*K1**2*K2 - 352*K1**2*K3**2 - 4500*K1**2 + 416*K1*K2**3*K3 - 736*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 7544*K1*K2*K3 + 608*K1*K3*K4 + 24*K1*K4*K5 - 2488*K2**4 - 624*K2**2*K3**2 - 8*K2**2*K4**2 + 2112*K2**2*K4 - 3302*K2**2 + 416*K2*K3*K5 + 8*K2*K4*K6 - 1744*K3**2 - 482*K4**2 - 68*K5**2 - 2*K6**2 + 4160 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.973'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17017', 'vk6.17259', 'vk6.20233', 'vk6.21529', 'vk6.23433', 'vk6.23735', 'vk6.27446', 'vk6.29052', 'vk6.35510', 'vk6.35959', 'vk6.38861', 'vk6.41049', 'vk6.42930', 'vk6.43227', 'vk6.45614', 'vk6.47369', 'vk6.55197', 'vk6.55434', 'vk6.57069', 'vk6.58207', 'vk6.59584', 'vk6.59908', 'vk6.61600', 'vk6.62778', 'vk6.65000', 'vk6.65205', 'vk6.66694', 'vk6.67541', 'vk6.68280', 'vk6.68432', 'vk6.69345', 'vk6.70093'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U2O5U4O6U3U6U5 |
R3 orbit | {'O1O2O3O4U1U2O5U4O6U3U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6U2O6U1O5U3U4 |
Gauss code of K* | O1O2O3U4U5U1U6O4O5U3O6U2 |
Gauss code of -K* | O1O2O3U2O4U1O5O6U4U3U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 0 1 2 1],[ 3 0 1 3 2 2 1],[ 1 -1 0 2 1 2 1],[ 0 -3 -2 0 0 3 1],[-1 -2 -1 0 0 1 0],[-2 -2 -2 -3 -1 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix | [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -3 -2 -2],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 0 -1 -2],[ 0 3 1 0 0 -2 -3],[ 1 2 1 1 2 0 -1],[ 3 2 1 2 3 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,0,1,3,0,1,3,2,2,0,1,1,1,0,1,2,2,3,1] |
Phi over symmetry | [-3,-1,0,1,1,2,1,0,2,3,3,-1,1,1,1,1,0,-1,0,0,1] |
Phi of -K | [-3,-1,0,1,1,2,1,0,2,3,3,-1,1,1,1,1,0,-1,0,0,1] |
Phi of K* | [-2,-1,-1,0,1,3,0,1,-1,1,3,0,1,1,2,0,1,3,-1,0,1] |
Phi of -K* | [-3,-1,0,1,1,2,1,3,1,2,2,2,1,1,2,1,0,3,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2+24w^2z+29w |
Inner characteristic polynomial | t^6+40t^4+24t^2+1 |
Outer characteristic polynomial | t^7+56t^5+77t^3+10t |
Flat arrow polynomial | -10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial | -128*K1**6 - 384*K1**4*K2**2 + 704*K1**4*K2 - 3488*K1**4 + 256*K1**3*K2*K3 - 544*K1**3*K3 + 704*K1**2*K2**3 - 7520*K1**2*K2**2 - 384*K1**2*K2*K4 + 9992*K1**2*K2 - 352*K1**2*K3**2 - 4500*K1**2 + 416*K1*K2**3*K3 - 736*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 7544*K1*K2*K3 + 608*K1*K3*K4 + 24*K1*K4*K5 - 2488*K2**4 - 624*K2**2*K3**2 - 8*K2**2*K4**2 + 2112*K2**2*K4 - 3302*K2**2 + 416*K2*K3*K5 + 8*K2*K4*K6 - 1744*K3**2 - 482*K4**2 - 68*K5**2 - 2*K6**2 + 4160 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice | False |