Gauss code |
O1O2O3O4O5O6U2U6U1U5U3U4 |
R3 orbit |
{'O1O2O3O4O5U1O6U2U6U5U3U4', 'O1O2O3O4O5O6U2U6U1U5U3U4'} |
R3 orbit length |
2 |
Gauss code of -K |
O1O2O3O4O5O6U3U4U2U6U1U5 |
Gauss code of K* |
O1O2O3O4O5O6U3U1U5U6U4U2 |
Gauss code of -K* |
O1O2O3O4O5O6U5U3U1U2U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -4 1 3 2 1],[ 3 0 -1 3 4 2 1],[ 4 1 0 3 4 2 1],[-1 -3 -3 0 1 0 0],[-3 -4 -4 -1 0 0 0],[-2 -2 -2 0 0 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 2 1 1 -3 -4],[-3 0 0 0 -1 -4 -4],[-2 0 0 0 0 -2 -2],[-1 0 0 0 0 -1 -1],[-1 1 0 0 0 -3 -3],[ 3 4 2 1 3 0 -1],[ 4 4 2 1 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,-1,3,4,0,0,1,4,4,0,0,2,2,0,1,1,3,3,1] |
Phi over symmetry |
[-4,-3,1,1,2,3,0,2,4,4,3,1,3,3,2,0,1,1,1,2,1] |
Phi of -K |
[-4,-3,1,1,2,3,0,2,4,4,3,1,3,3,2,0,1,1,1,2,1] |
Phi of K* |
[-3,-2,-1,-1,3,4,1,1,2,2,3,1,1,3,4,0,1,2,3,4,0] |
Phi of -K* |
[-4,-3,1,1,2,3,1,1,3,2,4,1,3,2,4,0,0,0,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+9w^2z+11w |
Inner characteristic polynomial |
t^6+62t^4+11t^2 |
Outer characteristic polynomial |
t^7+102t^5+76t^3 |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + K2 + K3 + 2 |
2-strand cable arrow polynomial |
-128*K1**6 + 256*K1**4*K2**3 - 640*K1**4*K2**2 + 640*K1**4*K2 - 528*K1**4 + 160*K1**3*K2*K3 - 384*K1**2*K2**4 + 448*K1**2*K2**3 - 880*K1**2*K2**2 + 744*K1**2*K2 - 16*K1**2*K3**2 - 292*K1**2 + 256*K1*K2**3*K3 + 568*K1*K2*K3 + 72*K1*K3*K4 + 24*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 128*K2**4*K4 - 384*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 - 176*K2**2*K3**2 - 112*K2**2*K4**2 + 184*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 186*K2**2 + 128*K2*K3*K5 + 48*K2*K4*K6 + 8*K2*K5*K7 - 200*K3**2 - 114*K4**2 - 52*K5**2 - 14*K6**2 + 488 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |