Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.957

Min(phi) over symmetries of the knot is: [-3,-1,0,0,1,3,1,0,2,3,4,-1,1,0,1,0,1,1,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.957']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+60t^5+188t^3+27t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.957']
2-strand cable arrow polynomial of the knot is: -192*K1**4 + 448*K1**2*K2**3 - 3376*K1**2*K2**2 - 224*K1**2*K2*K4 + 4488*K1**2*K2 - 3680*K1**2 + 448*K1*K2**3*K3 - 672*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4048*K1*K2*K3 + 312*K1*K3*K4 + 8*K1*K4*K5 - 1152*K2**6 + 1344*K2**4*K4 - 4368*K2**4 - 256*K2**3*K6 - 496*K2**2*K3**2 - 384*K2**2*K4**2 + 3600*K2**2*K4 - 1232*K2**2 + 312*K2*K3*K5 + 144*K2*K4*K6 - 1140*K3**2 - 620*K4**2 - 28*K5**2 - 8*K6**2 + 2930
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.957']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72618', 'vk6.72619', 'vk6.72762', 'vk6.72763', 'vk6.73078', 'vk6.73079', 'vk6.73163', 'vk6.73164', 'vk6.73782', 'vk6.73784', 'vk6.73920', 'vk6.73922', 'vk6.75718', 'vk6.75720', 'vk6.75924', 'vk6.77871', 'vk6.77917', 'vk6.77918', 'vk6.78014', 'vk6.78727', 'vk6.78729', 'vk6.78930', 'vk6.80340', 'vk6.80342', 'vk6.81179', 'vk6.81188', 'vk6.81776', 'vk6.82476', 'vk6.87291', 'vk6.87896', 'vk6.88418', 'vk6.88424']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U2O6O5U1U6U3U4
R3 orbit {'O1O2O3O4U5U2O6O5U1U6U3U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U2U5U4O6O5U3U6
Gauss code of K* O1O2O3O4U1U5U3U4O6O5U2U6
Gauss code of -K* O1O2O3O4U5U3O6O5U1U2U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 1 3 0 0],[ 3 0 1 3 4 2 0],[ 1 -1 0 0 1 1 -1],[-1 -3 0 0 1 0 -1],[-3 -4 -1 -1 0 -2 -1],[ 0 -2 -1 0 2 0 0],[ 0 0 1 1 1 0 0]]
Primitive based matrix [[ 0 3 1 0 0 -1 -3],[-3 0 -1 -1 -2 -1 -4],[-1 1 0 -1 0 0 -3],[ 0 1 1 0 0 1 0],[ 0 2 0 0 0 -1 -2],[ 1 1 0 -1 1 0 -1],[ 3 4 3 0 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,1,3,1,1,2,1,4,1,0,0,3,0,-1,0,1,2,1]
Phi over symmetry [-3,-1,0,0,1,3,1,0,2,3,4,-1,1,0,1,0,1,1,0,2,1]
Phi of -K [-3,-1,0,0,1,3,1,1,3,1,2,0,2,2,3,0,1,1,0,2,1]
Phi of K* [-3,-1,0,0,1,3,1,1,2,3,2,1,0,2,1,0,0,1,2,3,1]
Phi of -K* [-3,-1,0,0,1,3,1,0,2,3,4,-1,1,0,1,0,1,1,0,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial -6w^4z^2+6w^3z^2-16w^3z+21w^2z+11w
Inner characteristic polynomial t^6+40t^4+86t^2+9
Outer characteristic polynomial t^7+60t^5+188t^3+27t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -192*K1**4 + 448*K1**2*K2**3 - 3376*K1**2*K2**2 - 224*K1**2*K2*K4 + 4488*K1**2*K2 - 3680*K1**2 + 448*K1*K2**3*K3 - 672*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4048*K1*K2*K3 + 312*K1*K3*K4 + 8*K1*K4*K5 - 1152*K2**6 + 1344*K2**4*K4 - 4368*K2**4 - 256*K2**3*K6 - 496*K2**2*K3**2 - 384*K2**2*K4**2 + 3600*K2**2*K4 - 1232*K2**2 + 312*K2*K3*K5 + 144*K2*K4*K6 - 1140*K3**2 - 620*K4**2 - 28*K5**2 - 8*K6**2 + 2930
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact