Gauss code |
O1O2O3O4U5U1O6O5U6U4U2U3 |
R3 orbit |
{'O1O2O3O4U5U1O6O5U6U4U2U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U3U1U5O6O5U4U6 |
Gauss code of K* |
O1O2O3O4U5U3U4U2O6O5U1U6 |
Gauss code of -K* |
O1O2O3O4U5U4O6O5U3U1U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 1 0 -1],[ 2 0 1 2 0 2 -1],[ 0 -1 0 1 0 1 -1],[-2 -2 -1 0 0 -1 -1],[-1 0 0 0 0 0 -1],[ 0 -2 -1 1 0 0 -1],[ 1 1 1 1 1 1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -1 -1 -2],[-1 0 0 0 0 -1 0],[ 0 1 0 0 1 -1 -1],[ 0 1 0 -1 0 -1 -2],[ 1 1 1 1 1 0 1],[ 2 2 0 1 2 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,0,1,1,1,2,0,0,1,0,-1,1,1,1,2,-1] |
Phi over symmetry |
[-2,-1,0,0,1,2,-1,1,2,0,2,1,1,1,1,1,0,1,0,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,2,0,1,3,2,0,0,1,2,1,1,1,1,1,1] |
Phi of K* |
[-2,-1,0,0,1,2,1,1,1,2,2,1,1,1,3,-1,0,0,0,1,2] |
Phi of -K* |
[-2,-1,0,0,1,2,-1,1,2,0,2,1,1,1,1,1,0,1,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2-4w^3z+24w^2z+29w |
Inner characteristic polynomial |
t^6+17t^4+15t^2+1 |
Outer characteristic polynomial |
t^7+27t^5+59t^3+9t |
Flat arrow polynomial |
12*K1**3 - 12*K1**2 - 8*K1*K2 - 5*K1 + 6*K2 + K3 + 7 |
2-strand cable arrow polynomial |
-448*K1**4*K2**2 + 800*K1**4*K2 - 2832*K1**4 + 128*K1**3*K2**3*K3 + 544*K1**3*K2*K3 - 384*K1**3*K3 - 2240*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 4544*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 11152*K1**2*K2**2 - 576*K1**2*K2*K4 + 10448*K1**2*K2 - 432*K1**2*K3**2 - 32*K1**2*K4**2 - 5084*K1**2 + 2944*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 - 224*K1*K2**2*K5 + 32*K1*K2*K3**3 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7984*K1*K2*K3 + 720*K1*K3*K4 + 88*K1*K4*K5 - 224*K2**6 + 192*K2**4*K4 - 3456*K2**4 - 1184*K2**2*K3**2 - 96*K2**2*K4**2 + 2064*K2**2*K4 - 2222*K2**2 + 384*K2*K3*K5 + 24*K2*K4*K6 - 1640*K3**2 - 372*K4**2 - 52*K5**2 - 2*K6**2 + 4090 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |