Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.946

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,0,0,2,2,1,0,2,2,2,0,0,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.946']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+43t^5+68t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.946']
2-strand cable arrow polynomial of the knot is: -352*K1**4 + 32*K1**3*K2*K3 - 208*K1**2*K2**2 + 568*K1**2*K2 - 224*K1**2*K3**2 - 524*K1**2 + 776*K1*K2*K3 + 336*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 448*K2**2 - 404*K3**2 - 122*K4**2 + 560
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.946']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16520', 'vk6.16611', 'vk6.18087', 'vk6.18423', 'vk6.22951', 'vk6.23046', 'vk6.24534', 'vk6.24951', 'vk6.34918', 'vk6.35027', 'vk6.36677', 'vk6.37099', 'vk6.42489', 'vk6.42600', 'vk6.43953', 'vk6.44268', 'vk6.54747', 'vk6.54842', 'vk6.55903', 'vk6.56187', 'vk6.59211', 'vk6.59274', 'vk6.60429', 'vk6.60782', 'vk6.64757', 'vk6.64816', 'vk6.65545', 'vk6.65855', 'vk6.68055', 'vk6.68118', 'vk6.68623', 'vk6.68836', 'vk6.71378', 'vk6.71437', 'vk6.71904', 'vk6.71963', 'vk6.72827', 'vk6.74422', 'vk6.76611', 'vk6.77043', 'vk6.77766', 'vk6.78479', 'vk6.78636', 'vk6.78831', 'vk6.85144', 'vk6.87219', 'vk6.89278', 'vk6.89426']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U1O6O5U2U4U6U3
R3 orbit {'O1O2O3U4O5U1O4O6U2U6U5U3', 'O1O2O3O4U2U5O6U1O5U4U6U3', 'O1O2O3O4U5U1O6O5U2U4U6U3'}
R3 orbit length 3
Gauss code of -K O1O2O3O4U2U5U1U3O6O5U4U6
Gauss code of K* O1O2O3O4U5U1U4U2O6O5U3U6
Gauss code of -K* O1O2O3O4U5U2O6O5U3U1U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 1 0 1],[ 2 0 0 2 1 2 1],[ 2 0 0 3 1 2 1],[-2 -2 -3 0 -1 -1 0],[-1 -1 -1 1 0 -1 0],[ 0 -2 -2 1 1 0 1],[-1 -1 -1 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -1 -1 -2 -3],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 -1 -1 -1],[ 0 1 1 1 0 -2 -2],[ 2 2 1 1 2 0 0],[ 2 3 1 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,1,1,2,3,0,1,1,1,1,1,1,2,2,0]
Phi over symmetry [-2,-2,0,1,1,2,0,0,2,2,1,0,2,2,2,0,0,1,0,0,1]
Phi of -K [-2,-2,0,1,1,2,0,0,2,2,1,0,2,2,2,0,0,1,0,0,1]
Phi of K* [-2,-1,-1,0,2,2,0,1,1,1,2,0,0,2,2,0,2,2,0,0,0]
Phi of -K* [-2,-2,0,1,1,2,0,2,1,1,2,2,1,1,3,1,1,1,0,0,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 9w^2z+19w
Inner characteristic polynomial t^6+29t^4+39t^2
Outer characteristic polynomial t^7+43t^5+68t^3
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -352*K1**4 + 32*K1**3*K2*K3 - 208*K1**2*K2**2 + 568*K1**2*K2 - 224*K1**2*K3**2 - 524*K1**2 + 776*K1*K2*K3 + 336*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 448*K2**2 - 404*K3**2 - 122*K4**2 + 560
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {4, 5}, {2, 3}, {1}]]
If K is slice False
Contact