Gauss code |
O1O2O3O4U5U6O5O6U3U4U1U2 |
R3 orbit |
{'O1O2O3O4U5U6O5O6U3U4U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U4U1U2O5O6U5U6 |
Gauss code of K* |
O1O2O3O4U3U4U1U2O5O6U5U6 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -1 1 -1 1],[ 1 0 1 -1 1 0 2],[-1 -1 0 -1 1 -2 0],[ 1 1 1 0 1 0 2],[-1 -1 -1 -1 0 -2 0],[ 1 0 2 0 2 0 1],[-1 -2 0 -2 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 -1 -1 -1],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 -1 -1 -2],[-1 0 0 0 -2 -2 -1],[ 1 1 1 2 0 1 0],[ 1 1 1 2 -1 0 0],[ 1 2 2 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,1,1,1,-1,0,1,1,2,0,1,1,2,2,2,1,-1,0,0] |
Phi over symmetry |
[-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,1,1,1,0,0,0,0,-1] |
Phi of -K |
[-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,1,1,1,0,0,0,0,-1] |
Phi of K* |
[-1,-1,-1,1,1,1,-1,0,0,1,1,0,0,1,1,1,0,0,0,0,-1] |
Phi of -K* |
[-1,-1,-1,1,1,1,-1,0,1,1,2,0,1,1,2,2,2,1,-1,0,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z^2+27z+27 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+27w^2z+27w |
Inner characteristic polynomial |
t^6+23t^4+55t^2+1 |
Outer characteristic polynomial |
t^7+29t^5+75t^3+7t |
Flat arrow polynomial |
16*K1**3 - 12*K1**2 - 12*K1*K2 - 6*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-4096*K1**4*K2**2 + 6656*K1**4*K2 - 7744*K1**4 + 3072*K1**3*K2*K3 - 1024*K1**3*K3 - 6656*K1**2*K2**4 + 11648*K1**2*K2**3 + 1536*K1**2*K2**2*K4 - 19904*K1**2*K2**2 - 1984*K1**2*K2*K4 + 11136*K1**2*K2 - 448*K1**2*K3**2 - 64*K1**2 + 6272*K1*K2**3*K3 - 4608*K1*K2**2*K3 - 1408*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 9024*K1*K2*K3 + 320*K1*K3*K4 + 32*K1*K4*K5 - 2560*K2**6 + 2560*K2**4*K4 - 5328*K2**4 - 448*K2**3*K6 - 1024*K2**2*K3**2 - 272*K2**2*K4**2 + 3408*K2**2*K4 + 628*K2**2 + 288*K2*K3*K5 + 48*K2*K4*K6 - 624*K3**2 - 132*K4**2 - 16*K5**2 - 4*K6**2 + 2098 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
True |