Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.940

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,0,0,0,2,2,0,0,1,1,1,0,0,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.940', '7.16075']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+52t^5+131t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.940', '7.16075']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 192*K1**4*K2**2 + 384*K1**4*K2 - 624*K1**4 + 128*K1**3*K2*K3 - 576*K1**2*K2**2 + 800*K1**2*K2 - 208*K1**2*K3**2 - 96*K1**2*K4**2 - 48*K1**2 + 608*K1*K2*K3 + 224*K1*K3*K4 + 64*K1*K4*K5 - 96*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 112*K2**2*K4 - 252*K2**2 + 64*K2*K3*K5 + 32*K2*K4*K6 - 160*K3**2 - 72*K4**2 - 16*K5**2 - 4*K6**2 + 326
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.940']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.310', 'vk6.348', 'vk6.416', 'vk6.702', 'vk6.749', 'vk6.824', 'vk6.865', 'vk6.1125', 'vk6.1498', 'vk6.1570', 'vk6.1667', 'vk6.1947', 'vk6.1985', 'vk6.2047', 'vk6.2170', 'vk6.2279', 'vk6.2652', 'vk6.2729', 'vk6.2791', 'vk6.3120', 'vk6.5252', 'vk6.6509', 'vk6.8881', 'vk6.9798', 'vk6.18309', 'vk6.18647', 'vk6.19400', 'vk6.19695', 'vk6.25201', 'vk6.25869', 'vk6.26184', 'vk6.28493', 'vk6.36928', 'vk6.37393', 'vk6.37980', 'vk6.39867', 'vk6.40277', 'vk6.44857', 'vk6.46937', 'vk6.49124']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U6O5O6U2U4U1U3
R3 orbit {'O1O2O3O4U5U6O5O6U2U4U1U3', 'O1O2O3U4U5O4O5U1U6U2O6U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U2U4U1U3O5O6U5U6
Gauss code of K* O1O2O3O4U3U1U4U2O5O6U5U6
Gauss code of -K* O1O2O3O4U5U6O5O6U3U1U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 2 1 -1 1],[ 1 0 -1 2 1 0 2],[ 2 1 0 2 1 1 3],[-2 -2 -2 0 0 -3 -1],[-1 -1 -1 0 0 -2 0],[ 1 0 -1 3 2 0 1],[-1 -2 -3 1 0 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 -2 -3 -2],[-1 0 0 0 -1 -2 -1],[-1 1 0 0 -2 -1 -3],[ 1 2 1 2 0 0 -1],[ 1 3 2 1 0 0 -1],[ 2 2 1 3 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,0,1,2,3,2,0,1,2,1,2,1,3,0,1,1]
Phi over symmetry [-2,-1,-1,1,1,2,0,0,0,2,2,0,0,1,1,1,0,0,0,0,1]
Phi of -K [-2,-1,-1,1,1,2,0,0,0,2,2,0,0,1,1,1,0,0,0,0,1]
Phi of K* [-2,-1,-1,1,1,2,0,1,0,1,2,0,1,0,0,0,1,2,0,0,0]
Phi of -K* [-2,-1,-1,1,1,2,1,1,1,3,2,0,1,2,2,2,1,3,0,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial 7w^2z+15w
Inner characteristic polynomial t^6+40t^4+99t^2
Outer characteristic polynomial t^7+52t^5+131t^3
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -256*K1**6 - 192*K1**4*K2**2 + 384*K1**4*K2 - 624*K1**4 + 128*K1**3*K2*K3 - 576*K1**2*K2**2 + 800*K1**2*K2 - 208*K1**2*K3**2 - 96*K1**2*K4**2 - 48*K1**2 + 608*K1*K2*K3 + 224*K1*K3*K4 + 64*K1*K4*K5 - 96*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 112*K2**2*K4 - 252*K2**2 + 64*K2*K3*K5 + 32*K2*K4*K6 - 160*K3**2 - 72*K4**2 - 16*K5**2 - 4*K6**2 + 326
Genus of based matrix 0
Fillings of based matrix [[{5, 6}, {1, 4}, {2, 3}]]
If K is slice True
Contact