Gauss code |
O1O2O3O4U5U6O5O6U1U3U4U2 |
R3 orbit |
{'O1O2O3O4U5U6O5O6U1U3U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U1U2U4O5O6U5U6 |
Gauss code of K* |
O1O2O3O4U1U4U2U3O5O6U5U6 |
Gauss code of -K* |
O1O2O3O4U5U6O5O6U2U3U1U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 2 -1 1],[ 3 0 3 1 2 2 4],[-1 -3 0 -1 1 -2 0],[ 0 -1 1 0 1 -1 1],[-2 -2 -1 -1 0 -3 -1],[ 1 -2 2 1 3 0 1],[-1 -4 0 -1 1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 -1 -1 -1 -3 -2],[-1 1 0 0 -1 -1 -4],[-1 1 0 0 -1 -2 -3],[ 0 1 1 1 0 -1 -1],[ 1 3 1 2 1 0 -2],[ 3 2 4 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,1,1,1,3,2,0,1,1,4,1,2,3,1,1,2] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,0,1,3,0,1,0,0,0,0,1,0,0,0] |
Phi of -K |
[-3,-1,0,1,1,2,0,2,0,1,3,0,1,0,0,0,0,1,0,0,0] |
Phi of K* |
[-2,-1,-1,0,1,3,0,0,1,0,3,0,0,0,1,0,1,0,0,2,0] |
Phi of -K* |
[-3,-1,0,1,1,2,2,1,3,4,2,1,2,1,3,1,1,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+54t^4+151t^2+4 |
Outer characteristic polynomial |
t^7+70t^5+202t^3+13t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-512*K1**6 - 1792*K1**4*K2**2 + 3520*K1**4*K2 - 4864*K1**4 - 384*K1**3*K2**2*K3 + 2304*K1**3*K2*K3 - 928*K1**3*K3 + 384*K1**2*K2**5 - 2944*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 5472*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 1088*K1**2*K2**2*K4 - 14096*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 1632*K1**2*K2*K4 + 10416*K1**2*K2 - 704*K1**2*K3**2 - 160*K1**2*K4**2 - 2388*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 4512*K1*K2**3*K3 + 608*K1*K2**2*K3*K4 - 2816*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 992*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8424*K1*K2*K3 - 32*K1*K2*K4*K5 + 952*K1*K3*K4 + 128*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1472*K2**6 - 576*K2**4*K3**2 - 192*K2**4*K4**2 + 1760*K2**4*K4 - 4688*K2**4 + 416*K2**3*K3*K5 + 64*K2**3*K4*K6 - 288*K2**3*K6 + 64*K2**2*K3**2*K4 - 1616*K2**2*K3**2 - 32*K2**2*K3*K7 - 536*K2**2*K4**2 + 3136*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 602*K2**2 + 664*K2*K3*K5 + 136*K2*K4*K6 - 1160*K3**2 - 410*K4**2 - 60*K5**2 - 6*K6**2 + 2976 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {2, 3}, {1}]] |
If K is slice |
False |