Gauss code |
O1O2O3O4U5U6O5O6U1U2U4U3 |
R3 orbit |
{'O1O2O3O4U5U6O5O6U1U2U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U1U3U4O5O6U5U6 |
Gauss code of K* |
O1O2O3O4U1U2U4U3O5O6U5U6 |
Gauss code of -K* |
O1O2O3O4U5U6O5O6U2U1U3U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 2 2 -1 1],[ 3 0 1 3 2 2 4],[ 1 -1 0 2 1 0 2],[-2 -3 -2 0 0 -3 -1],[-2 -2 -1 0 0 -3 -1],[ 1 -2 0 3 3 0 1],[-1 -4 -2 1 1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 0 -1 -1 -3 -2],[-2 0 0 -1 -2 -3 -3],[-1 1 1 0 -2 -1 -4],[ 1 1 2 2 0 0 -1],[ 1 3 3 1 0 0 -2],[ 3 2 3 4 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,0,1,1,3,2,1,2,3,3,2,1,4,0,1,2] |
Phi over symmetry |
[-3,-1,-1,1,2,2,0,1,0,2,3,0,1,0,0,0,1,2,0,0,0] |
Phi of -K |
[-3,-1,-1,1,2,2,0,1,0,2,3,0,1,0,0,0,1,2,0,0,0] |
Phi of K* |
[-2,-2,-1,1,1,3,0,0,0,1,2,0,0,2,3,1,0,0,0,0,1] |
Phi of -K* |
[-3,-1,-1,1,2,2,1,2,4,2,3,0,2,1,2,1,3,3,1,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
7z^2+24z+21 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+11w^3z^2+24w^2z+21w |
Inner characteristic polynomial |
t^6+64t^4+188t^2+9 |
Outer characteristic polynomial |
t^7+84t^5+254t^3+21t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
256*K1**4*K2 - 1280*K1**4 - 256*K1**3*K2**2*K3 + 2304*K1**3*K2*K3 - 704*K1**3*K3 - 512*K1**2*K2**4 + 832*K1**2*K2**3 - 1280*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 6928*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 128*K1**2*K2*K3*K5 - 1120*K1**2*K2*K4 + 5024*K1**2*K2 - 1600*K1**2*K3**2 - 32*K1**2*K4**2 - 2124*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 4704*K1*K2**3*K3 + 864*K1*K2**2*K3*K4 - 1888*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 992*K1*K2**2*K5 + 128*K1*K2*K3**3 - 672*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 6624*K1*K2*K3 - 96*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1312*K1*K3*K4 + 64*K1*K4*K5 + 16*K1*K5*K6 + 8*K1*K6*K7 - 128*K2**6 - 1024*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2336*K2**4 + 704*K2**3*K3*K5 + 64*K2**3*K4*K6 + 128*K2**2*K3**2*K4 - 2784*K2**2*K3**2 - 64*K2**2*K3*K7 - 264*K2**2*K4**2 - 32*K2**2*K4*K8 + 1664*K2**2*K4 - 80*K2**2*K5**2 - 16*K2**2*K6**2 - 918*K2**2 - 32*K2*K3**2*K4 + 1296*K2*K3*K5 + 120*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1408*K3**2 - 288*K4**2 - 112*K5**2 - 26*K6**2 - 4*K7**2 - 2*K8**2 + 1984 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]] |
If K is slice |
False |