Gauss code |
O1O2O3O4U3U5O6O5U2U4U1U6 |
R3 orbit |
{'O1O2O3O4U3U5O6O5U2U4U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U4U1U3O6O5U6U2 |
Gauss code of K* |
O1O2O3O4U3U1U5U2O5O6U4U6 |
Gauss code of -K* |
O1O2O3O4U5U1O5O6U3U6U4U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 -1 1 1 2],[ 1 0 -1 -1 2 1 2],[ 2 1 0 0 2 2 1],[ 1 1 0 0 1 1 1],[-1 -2 -2 -1 0 -1 0],[-1 -1 -2 -1 1 0 2],[-2 -2 -1 -1 0 -2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -2 -1],[-1 0 0 -1 -1 -2 -2],[-1 2 1 0 -1 -1 -2],[ 1 1 1 1 0 1 0],[ 1 2 2 1 -1 0 -1],[ 2 1 2 2 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,2,1,2,1,1,1,2,2,1,1,2,-1,0,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,1,1,2,3,1,1,1,1,0,1,1,-1,0,1] |
Phi of -K |
[-2,-1,-1,1,1,2,0,1,1,1,3,1,0,1,1,1,1,2,1,1,-1] |
Phi of K* |
[-2,-1,-1,1,1,2,-1,1,1,2,3,1,1,1,1,0,1,1,-1,0,1] |
Phi of -K* |
[-2,-1,-1,1,1,2,0,1,2,2,1,1,1,1,1,1,2,2,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z^2+28z+29 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+28w^2z+29w |
Inner characteristic polynomial |
t^6+28t^4+25t^2+1 |
Outer characteristic polynomial |
t^7+40t^5+61t^3+8t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 8*K1*K2 - 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
1888*K1**4*K2 - 4352*K1**4 + 832*K1**3*K2*K3 - 928*K1**3*K3 - 128*K1**2*K2**4 + 1312*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 8064*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 9632*K1**2*K2 - 1248*K1**2*K3**2 - 32*K1**2*K3*K5 - 32*K1**2*K4**2 - 4104*K1**2 + 480*K1*K2**3*K3 - 1888*K1*K2**2*K3 - 224*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 8168*K1*K2*K3 + 1568*K1*K3*K4 + 96*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 1488*K2**4 - 64*K2**3*K6 - 608*K2**2*K3**2 - 128*K2**2*K4**2 + 1744*K2**2*K4 - 3724*K2**2 + 536*K2*K3*K5 + 80*K2*K4*K6 - 2008*K3**2 - 572*K4**2 - 96*K5**2 - 12*K6**2 + 4034 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |