Gauss code |
O1O2O3O4U3U5O6O5U1U6U2U4 |
R3 orbit |
{'O1O2O3O4U3U5O6O5U1U6U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U3U5U4O6O5U6U2 |
Gauss code of K* |
O1O2O3O4U1U3U5U4O5O6U2U6 |
Gauss code of -K* |
O1O2O3O4U5U3O5O6U1U6U2U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 -1 3 1 0],[ 3 0 2 0 4 3 0],[ 0 -2 0 0 2 1 -1],[ 1 0 0 0 1 1 0],[-3 -4 -2 -1 0 -2 -1],[-1 -3 -1 -1 2 0 0],[ 0 0 1 0 1 0 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -1 -3],[-3 0 -2 -1 -2 -1 -4],[-1 2 0 0 -1 -1 -3],[ 0 1 0 0 1 0 0],[ 0 2 1 -1 0 0 -2],[ 1 1 1 0 0 0 0],[ 3 4 3 0 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,1,3,2,1,2,1,4,0,1,1,3,-1,0,0,0,2,0] |
Phi over symmetry |
[-3,-1,0,0,1,3,0,0,2,3,4,0,0,1,1,1,0,1,1,2,2] |
Phi of -K |
[-3,-1,0,0,1,3,2,1,3,1,2,1,1,1,3,1,0,1,1,2,0] |
Phi of K* |
[-3,-1,0,0,1,3,0,1,2,3,2,0,1,1,1,-1,1,1,1,3,2] |
Phi of -K* |
[-3,-1,0,0,1,3,0,0,2,3,4,0,0,1,1,1,0,1,1,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
Inner characteristic polynomial |
t^6+42t^4+48t^2+1 |
Outer characteristic polynomial |
t^7+62t^5+92t^3+8t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 14*K1**2 - 8*K1*K2 - 2*K1*K3 - 2*K1 - 2*K2**2 + 6*K2 + 2*K3 + K4 + 8 |
2-strand cable arrow polynomial |
-192*K1**6 - 192*K1**4*K2**2 + 960*K1**4*K2 - 4288*K1**4 + 1184*K1**3*K2*K3 + 128*K1**3*K3*K4 - 1024*K1**3*K3 - 128*K1**2*K2**4 + 512*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 8176*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 + 64*K1**2*K2*K4**2 - 992*K1**2*K2*K4 + 11672*K1**2*K2 - 2208*K1**2*K3**2 - 32*K1**2*K3*K5 - 320*K1**2*K4**2 - 32*K1**2*K5**2 - 6988*K1**2 + 1088*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 832*K1*K2**2*K5 + 192*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 608*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 11864*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 64*K1*K3**3*K4 + 2840*K1*K3*K4 + 624*K1*K4*K5 + 64*K1*K5*K6 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1608*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 1520*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 336*K2**2*K4**2 - 32*K2**2*K4*K8 + 2272*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 5988*K2**2 - 224*K2*K3**2*K4 + 1496*K2*K3*K5 + 280*K2*K4*K6 + 40*K2*K5*K7 + 8*K2*K6*K8 - 224*K3**4 - 112*K3**2*K4**2 + 176*K3**2*K6 - 3576*K3**2 + 40*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1256*K4**2 - 436*K5**2 - 68*K6**2 - 8*K7**2 - 2*K8**2 + 6640 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice |
False |