Min(phi) over symmetries of the knot is: [-3,1,1,1,1,2,3,-1,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.922'] |
Arrow polynomial of the knot is: 4*K1**3 - 12*K1**2 - 10*K1*K2 + 2*K1 + 6*K2 + 4*K3 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.383', '6.922', '6.1172', '6.1356', '6.1359'] |
Outer characteristic polynomial of the knot is: t^5+28t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.922'] |
2-strand cable arrow polynomial of the knot is: -768*K1**6 - 512*K1**4*K2**2 + 2400*K1**4*K2 - 5184*K1**4 + 1024*K1**3*K2*K3 - 864*K1**3*K3 + 384*K1**2*K2**3 - 5424*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 9528*K1**2*K2 - 1664*K1**2*K3**2 - 128*K1**2*K3*K5 - 272*K1**2*K4**2 - 5352*K1**2 + 96*K1*K2**3*K3 - 928*K1*K2**2*K3 - 256*K1*K2**2*K5 - 416*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 8544*K1*K2*K3 - 32*K1*K2*K4*K5 - 64*K1*K3**2*K5 + 2928*K1*K3*K4 + 808*K1*K4*K5 + 176*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 768*K2**4 - 32*K2**3*K6 - 592*K2**2*K3**2 - 136*K2**2*K4**2 + 1704*K2**2*K4 - 5648*K2**2 - 64*K2*K3**2*K4 + 1408*K2*K3*K5 + 328*K2*K4*K6 - 32*K3**4 + 248*K3**2*K6 - 3624*K3**2 - 1592*K4**2 - 728*K5**2 - 248*K6**2 + 6326 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.922'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10951', 'vk6.10955', 'vk6.10982', 'vk6.10986', 'vk6.12121', 'vk6.12125', 'vk6.12152', 'vk6.12156', 'vk6.13789', 'vk6.13807', 'vk6.14220', 'vk6.14241', 'vk6.14669', 'vk6.14688', 'vk6.14860', 'vk6.14882', 'vk6.15827', 'vk6.15848', 'vk6.31819', 'vk6.31831', 'vk6.33629', 'vk6.33639', 'vk6.33660', 'vk6.33670', 'vk6.51779', 'vk6.51799', 'vk6.52646', 'vk6.52666', 'vk6.53799', 'vk6.53817', 'vk6.54222', 'vk6.54243'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3U5O6O5U1U4U6U2 |
R3 orbit | {'O1O2O3O4U3U5O6O5U1U4U6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3U5U1U4O6O5U6U2 |
Gauss code of K* | O1O2O3O4U1U4U5U2O5O6U3U6 |
Gauss code of -K* | O1O2O3O4U5U2O5O6U3U6U1U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -1 1 1 1],[ 3 0 3 0 2 3 1],[-1 -3 0 -1 0 0 0],[ 1 0 1 0 1 1 1],[-1 -2 0 -1 0 -1 0],[-1 -3 0 -1 1 0 1],[-1 -1 0 -1 0 -1 0]] |
Primitive based matrix | [[ 0 1 1 1 -3],[-1 0 1 1 -3],[-1 -1 0 0 -1],[-1 -1 0 0 -2],[ 3 3 1 2 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-1,-1,-1,3,-1,-1,3,0,1,2] |
Phi over symmetry | [-3,1,1,1,1,2,3,-1,-1,0] |
Phi of -K | [-3,1,1,1,1,2,3,-1,-1,0] |
Phi of K* | [-1,-1,-1,3,-1,0,2,1,1,3] |
Phi of -K* | [-3,1,1,1,1,2,3,0,-1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-3t |
Normalized Jones-Krushkal polynomial | z^2+22z+41 |
Enhanced Jones-Krushkal polynomial | w^3z^2+22w^2z+41w |
Inner characteristic polynomial | t^4+16t^2+1 |
Outer characteristic polynomial | t^5+28t^3+7t |
Flat arrow polynomial | 4*K1**3 - 12*K1**2 - 10*K1*K2 + 2*K1 + 6*K2 + 4*K3 + 7 |
2-strand cable arrow polynomial | -768*K1**6 - 512*K1**4*K2**2 + 2400*K1**4*K2 - 5184*K1**4 + 1024*K1**3*K2*K3 - 864*K1**3*K3 + 384*K1**2*K2**3 - 5424*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 9528*K1**2*K2 - 1664*K1**2*K3**2 - 128*K1**2*K3*K5 - 272*K1**2*K4**2 - 5352*K1**2 + 96*K1*K2**3*K3 - 928*K1*K2**2*K3 - 256*K1*K2**2*K5 - 416*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 8544*K1*K2*K3 - 32*K1*K2*K4*K5 - 64*K1*K3**2*K5 + 2928*K1*K3*K4 + 808*K1*K4*K5 + 176*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 768*K2**4 - 32*K2**3*K6 - 592*K2**2*K3**2 - 136*K2**2*K4**2 + 1704*K2**2*K4 - 5648*K2**2 - 64*K2*K3**2*K4 + 1408*K2*K3*K5 + 328*K2*K4*K6 - 32*K3**4 + 248*K3**2*K6 - 3624*K3**2 - 1592*K4**2 - 728*K5**2 - 248*K6**2 + 6326 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {4, 5}, {2, 3}, {1}]] |
If K is slice | False |