Min(phi) over symmetries of the knot is: [-3,-1,1,3,1,1,2,2,3,1] |
Flat knots (up to 7 crossings) with same phi are :['6.920'] |
Arrow polynomial of the knot is: 4*K1**3 + 8*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 - K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.521', '6.920', '6.1255', '6.1917'] |
Outer characteristic polynomial of the knot is: t^5+48t^3+44t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.920'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 256*K1**4*K2**3 - 768*K1**4*K2**2 + 896*K1**4*K2 - 1184*K1**4 + 320*K1**3*K2*K3 - 640*K1**2*K2**4 + 768*K1**2*K2**3 - 2928*K1**2*K2**2 + 2640*K1**2*K2 - 96*K1**2*K3**2 - 1544*K1**2 + 896*K1*K2**3*K3 + 2792*K1*K2*K3 + 224*K1*K3*K4 + 32*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 192*K2**4*K3**2 - 192*K2**4*K4**2 + 448*K2**4*K4 - 1168*K2**4 + 192*K2**3*K3*K5 + 128*K2**3*K4*K6 - 992*K2**2*K3**2 - 848*K2**2*K4**2 + 1136*K2**2*K4 - 112*K2**2*K5**2 - 16*K2**2*K6**2 - 1358*K2**2 + 616*K2*K3*K5 + 432*K2*K4*K6 + 32*K2*K5*K7 + 8*K3**2*K6 - 952*K3**2 - 500*K4**2 - 144*K5**2 - 58*K6**2 + 2026 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.920'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10919', 'vk6.10930', 'vk6.10934', 'vk6.12085', 'vk6.12089', 'vk6.12100', 'vk6.12104', 'vk6.14477', 'vk6.14478', 'vk6.15699', 'vk6.15700', 'vk6.16141', 'vk6.16142', 'vk6.30525', 'vk6.30529', 'vk6.30555', 'vk6.30559', 'vk6.31806', 'vk6.34070', 'vk6.34164', 'vk6.34165', 'vk6.34507', 'vk6.51763', 'vk6.51767', 'vk6.52636', 'vk6.54135', 'vk6.54136', 'vk6.54323', 'vk6.54527', 'vk6.63470', 'vk6.63481', 'vk6.63485'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3U5O6O5U1U2U6U4 |
R3 orbit | {'O1O2O3O4U3U5O6O5U1U2U6U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U5U3U4O6O5U6U2 |
Gauss code of K* | O1O2O3O4U1U2U5U4O5O6U3U6 |
Gauss code of -K* | O1O2O3O4U5U2O5O6U1U6U3U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 -1 3 1 1],[ 3 0 1 0 4 3 1],[ 1 -1 0 0 3 1 0],[ 1 0 0 0 1 1 0],[-3 -4 -3 -1 0 -2 -1],[-1 -3 -1 -1 2 0 1],[-1 -1 0 0 1 -1 0]] |
Primitive based matrix | [[ 0 3 1 -1 -3],[-3 0 -1 -3 -4],[-1 1 0 0 -1],[ 1 3 0 0 -1],[ 3 4 1 1 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-3,-1,1,3,1,3,4,0,1,1] |
Phi over symmetry | [-3,-1,1,3,1,1,2,2,3,1] |
Phi of -K | [-3,-1,1,3,1,3,2,2,1,1] |
Phi of K* | [-3,-1,1,3,1,1,2,2,3,1] |
Phi of -K* | [-3,-1,1,3,1,1,4,0,3,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 9z+19 |
Enhanced Jones-Krushkal polynomial | -8w^3z+17w^2z+19w |
Inner characteristic polynomial | t^4+28t^2+4 |
Outer characteristic polynomial | t^5+48t^3+44t |
Flat arrow polynomial | 4*K1**3 + 8*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 - K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | -128*K1**6 + 256*K1**4*K2**3 - 768*K1**4*K2**2 + 896*K1**4*K2 - 1184*K1**4 + 320*K1**3*K2*K3 - 640*K1**2*K2**4 + 768*K1**2*K2**3 - 2928*K1**2*K2**2 + 2640*K1**2*K2 - 96*K1**2*K3**2 - 1544*K1**2 + 896*K1*K2**3*K3 + 2792*K1*K2*K3 + 224*K1*K3*K4 + 32*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 192*K2**4*K3**2 - 192*K2**4*K4**2 + 448*K2**4*K4 - 1168*K2**4 + 192*K2**3*K3*K5 + 128*K2**3*K4*K6 - 992*K2**2*K3**2 - 848*K2**2*K4**2 + 1136*K2**2*K4 - 112*K2**2*K5**2 - 16*K2**2*K6**2 - 1358*K2**2 + 616*K2*K3*K5 + 432*K2*K4*K6 + 32*K2*K5*K7 + 8*K3**2*K6 - 952*K3**2 - 500*K4**2 - 144*K5**2 - 58*K6**2 + 2026 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}]] |
If K is slice | False |