Gauss code |
O1O2O3O4U3U1O5O6U5U6U2U4 |
R3 orbit |
{'O1O2O3O4U3U1O5O6U5U6U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U3U5U6O5O6U4U2 |
Gauss code of K* |
O1O2O3O4U5U3U6U4O6O5U1U2 |
Gauss code of -K* |
O1O2O3O4U3U4O5O6U1U6U2U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 -1 3 -1 1],[ 2 0 1 0 3 0 0],[ 0 -1 0 0 2 -1 1],[ 1 0 0 0 1 0 0],[-3 -3 -2 -1 0 -1 1],[ 1 0 1 0 1 0 1],[-1 0 -1 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 1 -2 -1 -1 -3],[-1 -1 0 -1 0 -1 0],[ 0 2 1 0 0 -1 -1],[ 1 1 0 0 0 0 0],[ 1 1 1 1 0 0 0],[ 2 3 0 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,-1,2,1,1,3,1,0,1,0,0,1,1,0,0,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,2,1,1,3,1,0,1,0,0,1,1,0,0,0] |
Phi of -K |
[-2,-1,-1,0,1,3,1,1,1,3,2,0,0,1,3,1,2,3,0,1,3] |
Phi of K* |
[-3,-1,0,1,1,2,3,1,3,3,2,0,1,2,3,0,1,1,0,1,1] |
Phi of -K* |
[-2,-1,-1,0,1,3,0,0,1,0,3,0,0,0,1,1,1,1,1,2,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+20t^4+26t^2+1 |
Outer characteristic polynomial |
t^7+36t^5+55t^3+10t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 6*K1**2 - 6*K1*K2 - 3*K1 - 2*K2**2 + 3*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-256*K1**6 - 576*K1**4*K2**2 + 3776*K1**4*K2 - 6576*K1**4 - 384*K1**3*K2**2*K3 + 2112*K1**3*K2*K3 - 1760*K1**3*K3 + 384*K1**2*K2**5 - 1664*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 3936*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 1664*K1**2*K2**2*K4 - 13536*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 96*K1**2*K2*K4**2 - 1568*K1**2*K2*K4 + 11064*K1**2*K2 - 1680*K1**2*K3**2 - 288*K1**2*K4**2 - 1860*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 2336*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 2112*K1*K2**2*K3 - 608*K1*K2**2*K5 + 192*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 928*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 8880*K1*K2*K3 - 32*K1*K2*K4*K5 + 1312*K1*K3*K4 + 208*K1*K4*K5 + 8*K1*K5*K6 - 128*K2**8 + 256*K2**6*K4 - 1088*K2**6 - 192*K2**4*K3**2 - 192*K2**4*K4**2 + 1632*K2**4*K4 - 3864*K2**4 + 32*K2**3*K3*K5 - 288*K2**3*K6 + 192*K2**2*K3**2*K4 - 1232*K2**2*K3**2 - 32*K2**2*K3*K7 + 64*K2**2*K4**3 - 504*K2**2*K4**2 + 2520*K2**2*K4 - 1174*K2**2 + 624*K2*K3*K5 + 144*K2*K4*K6 - 64*K3**4 - 48*K3**2*K4**2 + 16*K3**2*K6 - 1200*K3**2 + 8*K3*K4*K7 - 8*K4**4 - 402*K4**2 - 52*K5**2 - 10*K6**2 + 3040 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {2, 3}, {1}]] |
If K is slice |
False |