Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.906

Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,-1,0,1,2,2,0,1,1,2,1,2,2,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.906']
Arrow polynomial of the knot is: 4*K1**3 - 12*K1**2 - 8*K1*K2 + K1 + 6*K2 + 3*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.906', '6.1223', '6.1338', '6.1351', '6.1571', '6.1670', '6.1718', '6.1743', '6.1765', '6.1793', '6.1852', '6.2070']
Outer characteristic polynomial of the knot is: t^7+61t^5+92t^3+14t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.906']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 288*K1**4*K2 - 1952*K1**4 + 128*K1**3*K2**3*K3 + 1088*K1**3*K2*K3 - 672*K1**3*K3 - 448*K1**2*K2**4 + 512*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 7488*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 704*K1**2*K2*K4 + 11000*K1**2*K2 - 896*K1**2*K3**2 - 64*K1**2*K4**2 - 8280*K1**2 + 1984*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 864*K1*K2**2*K5 + 224*K1*K2*K3**3 - 384*K1*K2*K3*K4 + 10520*K1*K2*K3 + 1480*K1*K3*K4 + 256*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1824*K2**4 - 32*K2**3*K6 - 1344*K2**2*K3**2 - 64*K2**2*K4**2 + 2320*K2**2*K4 - 6082*K2**2 + 1104*K2*K3*K5 + 48*K2*K4*K6 - 32*K3**4 - 3260*K3**2 - 832*K4**2 - 244*K5**2 - 6*K6**2 + 6438
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.906']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16508', 'vk6.16599', 'vk6.18084', 'vk6.18422', 'vk6.22939', 'vk6.23034', 'vk6.24535', 'vk6.24954', 'vk6.34914', 'vk6.35023', 'vk6.36674', 'vk6.37098', 'vk6.42485', 'vk6.42596', 'vk6.43954', 'vk6.44271', 'vk6.54751', 'vk6.54846', 'vk6.55900', 'vk6.56186', 'vk6.59215', 'vk6.59278', 'vk6.60430', 'vk6.60785', 'vk6.64765', 'vk6.64828', 'vk6.65542', 'vk6.65854', 'vk6.68067', 'vk6.68130', 'vk6.68624', 'vk6.68839']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U5O6O5U3U1U4U6
R3 orbit {'O1O2O3O4U2U5O6O5U3U1U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U4U2O6O5U6U3
Gauss code of K* O1O2O3O4U2U5U1U3O5O6U4U6
Gauss code of -K* O1O2O3O4U5U1O5O6U2U4U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 -1 2 1 2],[ 2 0 -1 1 3 2 2],[ 2 1 0 1 2 2 2],[ 1 -1 -1 0 1 1 1],[-2 -3 -2 -1 0 -2 0],[-1 -2 -2 -1 2 0 2],[-2 -2 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 2 1 -1 -2 -2],[-2 0 0 -2 -1 -2 -2],[-2 0 0 -2 -1 -2 -3],[-1 2 2 0 -1 -2 -2],[ 1 1 1 1 0 -1 -1],[ 2 2 2 2 1 0 1],[ 2 2 3 2 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,2,2,0,2,1,2,2,2,1,2,3,1,2,2,1,1,-1]
Phi over symmetry [-2,-2,-1,1,2,2,-1,0,1,2,2,0,1,1,2,1,2,2,-1,-1,0]
Phi of -K [-2,-2,-1,1,2,2,-1,0,1,2,2,0,1,1,2,1,2,2,-1,-1,0]
Phi of K* [-2,-2,-1,1,2,2,0,-1,2,1,2,-1,2,2,2,1,1,1,0,0,-1]
Phi of -K* [-2,-2,-1,1,2,2,-1,1,2,2,3,1,2,2,2,1,1,1,2,2,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+43t^4+36t^2+4
Outer characteristic polynomial t^7+61t^5+92t^3+14t
Flat arrow polynomial 4*K1**3 - 12*K1**2 - 8*K1*K2 + K1 + 6*K2 + 3*K3 + 7
2-strand cable arrow polynomial -192*K1**4*K2**2 + 288*K1**4*K2 - 1952*K1**4 + 128*K1**3*K2**3*K3 + 1088*K1**3*K2*K3 - 672*K1**3*K3 - 448*K1**2*K2**4 + 512*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 7488*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 704*K1**2*K2*K4 + 11000*K1**2*K2 - 896*K1**2*K3**2 - 64*K1**2*K4**2 - 8280*K1**2 + 1984*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 864*K1*K2**2*K5 + 224*K1*K2*K3**3 - 384*K1*K2*K3*K4 + 10520*K1*K2*K3 + 1480*K1*K3*K4 + 256*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1824*K2**4 - 32*K2**3*K6 - 1344*K2**2*K3**2 - 64*K2**2*K4**2 + 2320*K2**2*K4 - 6082*K2**2 + 1104*K2*K3*K5 + 48*K2*K4*K6 - 32*K3**4 - 3260*K3**2 - 832*K4**2 - 244*K5**2 - 6*K6**2 + 6438
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice True
Contact