Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.891

Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,-1,1,1,2,5,1,0,0,2,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.891']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+62t^5+67t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.891']
2-strand cable arrow polynomial of the knot is: -1280*K1**2*K2**4 - 512*K1**2*K2**3*K4 + 2080*K1**2*K2**3 - 4336*K1**2*K2**2 - 544*K1**2*K2*K4 + 3632*K1**2*K2 - 16*K1**2*K3**2 - 3260*K1**2 + 1920*K1*K2**3*K3 + 576*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4136*K1*K2*K3 - 32*K1*K2*K4*K5 + 784*K1*K3*K4 + 48*K1*K4*K5 + 56*K1*K5*K6 - 128*K2**6 + 448*K2**4*K4 - 1672*K2**4 - 800*K2**2*K3**2 - 464*K2**2*K4**2 + 1632*K2**2*K4 - 1840*K2**2 + 296*K2*K3*K5 + 144*K2*K4*K6 - 16*K3**4 + 24*K3**2*K6 - 1348*K3**2 - 710*K4**2 - 96*K5**2 - 64*K6**2 + 2652
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.891']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11553', 'vk6.11892', 'vk6.12909', 'vk6.13209', 'vk6.20682', 'vk6.22120', 'vk6.28194', 'vk6.29617', 'vk6.31333', 'vk6.31742', 'vk6.32503', 'vk6.32906', 'vk6.39648', 'vk6.41887', 'vk6.46244', 'vk6.47849', 'vk6.52331', 'vk6.52594', 'vk6.53181', 'vk6.53471', 'vk6.57614', 'vk6.58772', 'vk6.62282', 'vk6.63218', 'vk6.63829', 'vk6.63964', 'vk6.64276', 'vk6.64470', 'vk6.67078', 'vk6.67942', 'vk6.69689', 'vk6.70370']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U3O5O6U1U6U5U4
R3 orbit {'O1O2O3O4U2U3O5O6U1U6U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U6U4O6O5U2U3
Gauss code of K* O1O2O3O4U1U5U6U4O5O6U3U2
Gauss code of -K* O1O2O3O4U3U2O5O6U1U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 3 1 1],[ 3 0 -1 1 5 2 1],[ 2 1 0 1 2 0 0],[ 0 -1 -1 0 1 0 0],[-3 -5 -2 -1 0 0 0],[-1 -2 0 0 0 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 3 1 1 0 -2 -3],[-3 0 0 0 -1 -2 -5],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 0 -2],[ 0 1 0 0 0 -1 -1],[ 2 2 0 0 1 0 1],[ 3 5 1 2 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,0,2,3,0,0,1,2,5,0,0,0,1,0,0,2,1,1,-1]
Phi over symmetry [-3,-2,0,1,1,3,-1,1,1,2,5,1,0,0,2,0,0,1,0,0,0]
Phi of -K [-3,-2,0,1,1,3,2,2,2,3,1,1,3,3,3,1,1,2,0,2,2]
Phi of K* [-3,-1,-1,0,2,3,2,2,2,3,1,0,1,3,2,1,3,3,1,2,2]
Phi of -K* [-3,-2,0,1,1,3,-1,1,1,2,5,1,0,0,2,0,0,1,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w
Inner characteristic polynomial t^6+38t^4+34t^2
Outer characteristic polynomial t^7+62t^5+67t^3+7t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial -1280*K1**2*K2**4 - 512*K1**2*K2**3*K4 + 2080*K1**2*K2**3 - 4336*K1**2*K2**2 - 544*K1**2*K2*K4 + 3632*K1**2*K2 - 16*K1**2*K3**2 - 3260*K1**2 + 1920*K1*K2**3*K3 + 576*K1*K2**2*K3*K4 - 1056*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4136*K1*K2*K3 - 32*K1*K2*K4*K5 + 784*K1*K3*K4 + 48*K1*K4*K5 + 56*K1*K5*K6 - 128*K2**6 + 448*K2**4*K4 - 1672*K2**4 - 800*K2**2*K3**2 - 464*K2**2*K4**2 + 1632*K2**2*K4 - 1840*K2**2 + 296*K2*K3*K5 + 144*K2*K4*K6 - 16*K3**4 + 24*K3**2*K6 - 1348*K3**2 - 710*K4**2 - 96*K5**2 - 64*K6**2 + 2652
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact