Gauss code |
O1O2O3O4U2U3O5O6U1U5U6U4 |
R3 orbit |
{'O1O2O3O4U2U3O5O6U1U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U5U6U4O5O6U2U3 |
Gauss code of K* |
O1O2O3O4U1U5U6U4O5O6U2U3 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 0 3 0 2],[ 3 0 -1 1 5 1 2],[ 2 1 0 1 2 0 0],[ 0 -1 -1 0 1 0 0],[-3 -5 -2 -1 0 -1 1],[ 0 -1 0 0 1 0 1],[-2 -2 0 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 2 0 0 -2 -3],[-3 0 1 -1 -1 -2 -5],[-2 -1 0 0 -1 0 -2],[ 0 1 0 0 0 -1 -1],[ 0 1 1 0 0 0 -1],[ 2 2 0 1 0 0 1],[ 3 5 2 1 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,0,2,3,-1,1,1,2,5,0,1,0,2,0,1,1,0,1,-1] |
Phi over symmetry |
[-3,-2,0,0,2,3,-1,1,1,2,5,0,1,0,2,0,1,1,0,1,-1] |
Phi of -K |
[-3,-2,0,0,2,3,2,2,2,3,1,1,2,4,3,0,2,2,1,2,2] |
Phi of K* |
[-3,-2,0,0,2,3,2,2,2,3,1,1,2,4,3,0,2,2,1,2,2] |
Phi of -K* |
[-3,-2,0,0,2,3,-1,1,1,2,5,0,1,0,2,0,1,1,0,1,-1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
Inner characteristic polynomial |
t^6+41t^4+50t^2+1 |
Outer characteristic polynomial |
t^7+67t^5+88t^3+5t |
Flat arrow polynomial |
16*K1**3 - 8*K1**2 - 8*K1*K2 - 8*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 256*K1**4*K2 - 736*K1**4 + 128*K1**3*K2*K3 - 256*K1**3*K3 - 768*K1**2*K2**4 + 2624*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 7008*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 6544*K1**2*K2 - 160*K1**2*K3**2 - 4264*K1**2 + 1728*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1536*K1*K2**2*K3 - 256*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 5504*K1*K2*K3 + 480*K1*K3*K4 + 16*K1*K4*K5 + 16*K1*K5*K6 - 256*K2**6 + 192*K2**4*K4 - 2880*K2**4 - 896*K2**2*K3**2 - 128*K2**2*K4**2 + 1872*K2**2*K4 - 1448*K2**2 + 224*K2*K3*K5 + 16*K2*K4*K6 - 1160*K3**2 - 304*K4**2 - 32*K5**2 - 8*K6**2 + 2942 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice |
True |