Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.887

Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,-2,-1,2,3,3,0,2,1,2,2,1,2,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.887']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.395', '6.430', '6.440', '6.548', '6.551', '6.774', '6.832', '6.887', '6.908', '6.911', '6.1205', '6.1332', '6.1339', '6.1341', '6.1346', '6.1382', '6.1488', '6.1651', '6.1655', '6.1686']
Outer characteristic polynomial of the knot is: t^7+49t^5+73t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.887']
2-strand cable arrow polynomial of the knot is: -192*K1**2*K2**4 + 736*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3600*K1**2*K2**2 - 224*K1**2*K2*K4 + 3840*K1**2*K2 - 64*K1**2*K3**2 - 64*K1**2*K4**2 - 3832*K1**2 + 480*K1*K2**3*K3 - 896*K1*K2**2*K3 - 128*K1*K2**2*K5 + 32*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5552*K1*K2*K3 + 944*K1*K3*K4 + 200*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1120*K2**4 - 848*K2**2*K3**2 - 112*K2**2*K4**2 + 1536*K2**2*K4 - 3006*K2**2 - 160*K2*K3**2*K4 + 856*K2*K3*K5 + 144*K2*K4*K6 - 64*K3**4 + 120*K3**2*K6 - 2120*K3**2 - 740*K4**2 - 216*K5**2 - 50*K6**2 + 3314
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.887']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4733', 'vk6.5057', 'vk6.6265', 'vk6.6710', 'vk6.8230', 'vk6.8675', 'vk6.9617', 'vk6.9939', 'vk6.20656', 'vk6.22087', 'vk6.28142', 'vk6.29571', 'vk6.39584', 'vk6.41815', 'vk6.46199', 'vk6.47817', 'vk6.48765', 'vk6.48971', 'vk6.49569', 'vk6.49780', 'vk6.50775', 'vk6.50984', 'vk6.51257', 'vk6.51461', 'vk6.57580', 'vk6.58746', 'vk6.62250', 'vk6.63196', 'vk6.67050', 'vk6.67923', 'vk6.69675', 'vk6.70356']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U1O5O6U5U4U6U3
R3 orbit {'O1O2O3O4U2U1O5O6U5U4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U1U6O5O6U4U3
Gauss code of K* O1O2O3O4U5U6U4U2O6O5U1U3
Gauss code of -K* O1O2O3O4U2U4O5O6U3U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 2 1 -1 2],[ 2 0 0 3 2 0 1],[ 2 0 0 2 1 0 1],[-2 -3 -2 0 -1 -1 2],[-1 -2 -1 1 0 0 2],[ 1 0 0 1 0 0 1],[-2 -1 -1 -2 -2 -1 0]]
Primitive based matrix [[ 0 2 2 1 -1 -2 -2],[-2 0 2 -1 -1 -2 -3],[-2 -2 0 -2 -1 -1 -1],[-1 1 2 0 0 -1 -2],[ 1 1 1 0 0 0 0],[ 2 2 1 1 0 0 0],[ 2 3 1 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,2,2,-2,1,1,2,3,2,1,1,1,0,1,2,0,0,0]
Phi over symmetry [-2,-2,-1,1,2,2,-2,-1,2,3,3,0,2,1,2,2,1,2,1,1,0]
Phi of -K [-2,-2,-1,1,2,2,0,1,1,1,3,1,2,2,3,2,2,2,0,-1,-2]
Phi of K* [-2,-2,-1,1,2,2,-2,-1,2,3,3,0,2,1,2,2,1,2,1,1,0]
Phi of -K* [-2,-2,-1,1,2,2,0,0,1,1,2,0,2,1,3,0,1,1,2,1,-2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 8z^2+27z+23
Enhanced Jones-Krushkal polynomial 8w^3z^2+27w^2z+23w
Inner characteristic polynomial t^6+31t^4+21t^2
Outer characteristic polynomial t^7+49t^5+73t^3+5t
Flat arrow polynomial 4*K1**3 - 4*K1*K2 - K1 + K3 + 1
2-strand cable arrow polynomial -192*K1**2*K2**4 + 736*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3600*K1**2*K2**2 - 224*K1**2*K2*K4 + 3840*K1**2*K2 - 64*K1**2*K3**2 - 64*K1**2*K4**2 - 3832*K1**2 + 480*K1*K2**3*K3 - 896*K1*K2**2*K3 - 128*K1*K2**2*K5 + 32*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5552*K1*K2*K3 + 944*K1*K3*K4 + 200*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1120*K2**4 - 848*K2**2*K3**2 - 112*K2**2*K4**2 + 1536*K2**2*K4 - 3006*K2**2 - 160*K2*K3**2*K4 + 856*K2*K3*K5 + 144*K2*K4*K6 - 64*K3**4 + 120*K3**2*K6 - 2120*K3**2 - 740*K4**2 - 216*K5**2 - 50*K6**2 + 3314
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact