Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,0,3,2,3,0,1,1,1,2,1,1,1,2,0] |
Flat knots (up to 7 crossings) with same phi are :['6.883'] |
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354'] |
Outer characteristic polynomial of the knot is: t^7+56t^5+54t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.883'] |
2-strand cable arrow polynomial of the knot is: 384*K1**4*K2 - 1664*K1**4 + 128*K1**3*K3*K4 - 192*K1**3*K3 - 640*K1**2*K2**2 - 96*K1**2*K2*K4 + 3264*K1**2*K2 - 736*K1**2*K3**2 - 128*K1**2*K3*K5 - 800*K1**2*K4**2 - 2848*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 2568*K1*K2*K3 + 2224*K1*K3*K4 + 1032*K1*K4*K5 - 128*K2**4 - 128*K2**2*K3**2 - 72*K2**2*K4**2 + 688*K2**2*K4 - 2230*K2**2 + 344*K2*K3*K5 + 72*K2*K4*K6 - 1528*K3**2 - 1108*K4**2 - 352*K5**2 - 18*K6**2 + 2794 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.883'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20042', 'vk6.20105', 'vk6.21326', 'vk6.21383', 'vk6.27105', 'vk6.27182', 'vk6.28798', 'vk6.28865', 'vk6.38486', 'vk6.38595', 'vk6.40687', 'vk6.40783', 'vk6.45382', 'vk6.45475', 'vk6.47137', 'vk6.47211', 'vk6.56843', 'vk6.56922', 'vk6.57983', 'vk6.58054', 'vk6.61367', 'vk6.61464', 'vk6.62535', 'vk6.62611', 'vk6.66557', 'vk6.66630', 'vk6.67349', 'vk6.67414', 'vk6.69206', 'vk6.69270', 'vk6.69952', 'vk6.70007'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2U1O5O6U3U6U5U4 |
R3 orbit | {'O1O2O3O4U2U1O5O6U3U6U5U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U5U6U2O6O5U4U3 |
Gauss code of K* | O1O2O3O4U5U6U1U4O6O5U3U2 |
Gauss code of -K* | O1O2O3O4U3U2O5O6U1U4U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 -1 3 1 1],[ 2 0 0 2 3 1 1],[ 2 0 0 1 2 1 1],[ 1 -2 -1 0 3 2 1],[-3 -3 -2 -3 0 0 0],[-1 -1 -1 -2 0 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix | [[ 0 3 1 1 -1 -2 -2],[-3 0 0 0 -3 -2 -3],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -2 -1 -1],[ 1 3 1 2 0 -1 -2],[ 2 2 1 1 1 0 0],[ 2 3 1 1 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,1,2,2,0,0,3,2,3,0,1,1,1,2,1,1,1,2,0] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,0,3,2,3,0,1,1,1,2,1,1,1,2,0] |
Phi of -K | [-2,-2,-1,1,1,3,0,-1,2,2,2,0,2,2,3,0,1,1,0,2,2] |
Phi of K* | [-3,-1,-1,1,2,2,2,2,1,2,3,0,0,2,2,1,2,2,-1,0,0] |
Phi of -K* | [-2,-2,-1,1,1,3,0,1,1,1,2,2,1,1,3,1,2,3,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+2t^2-t |
Normalized Jones-Krushkal polynomial | 8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial | 8w^3z^2+29w^2z+27w |
Inner characteristic polynomial | t^6+36t^4+18t^2+1 |
Outer characteristic polynomial | t^7+56t^5+54t^3+4t |
Flat arrow polynomial | -2*K1*K2 + K1 + K3 + 1 |
2-strand cable arrow polynomial | 384*K1**4*K2 - 1664*K1**4 + 128*K1**3*K3*K4 - 192*K1**3*K3 - 640*K1**2*K2**2 - 96*K1**2*K2*K4 + 3264*K1**2*K2 - 736*K1**2*K3**2 - 128*K1**2*K3*K5 - 800*K1**2*K4**2 - 2848*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 2568*K1*K2*K3 + 2224*K1*K3*K4 + 1032*K1*K4*K5 - 128*K2**4 - 128*K2**2*K3**2 - 72*K2**2*K4**2 + 688*K2**2*K4 - 2230*K2**2 + 344*K2*K3*K5 + 72*K2*K4*K6 - 1528*K3**2 - 1108*K4**2 - 352*K5**2 - 18*K6**2 + 2794 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}]] |
If K is slice | False |