Gauss code |
O1O2O3O4U2U1O5O6U3U5U6U4 |
R3 orbit |
{'O1O2O3O4U2U1O5O6U3U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U5U6U2O5O6U4U3 |
Gauss code of K* |
O1O2O3O4U5U6U1U4O6O5U2U3 |
Gauss code of -K* |
O1O2O3O4U2U3O5O6U1U4U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 -1 3 0 2],[ 2 0 0 2 3 1 1],[ 2 0 0 1 2 1 1],[ 1 -2 -1 0 3 1 2],[-3 -3 -2 -3 0 -1 1],[ 0 -1 -1 -1 1 0 1],[-2 -1 -1 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 2 0 -1 -2 -2],[-3 0 1 -1 -3 -2 -3],[-2 -1 0 -1 -2 -1 -1],[ 0 1 1 0 -1 -1 -1],[ 1 3 2 1 0 -1 -2],[ 2 2 1 1 1 0 0],[ 2 3 1 1 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,1,2,2,-1,1,3,2,3,1,2,1,1,1,1,1,1,2,0] |
Phi over symmetry |
[-3,-2,0,1,2,2,-1,1,3,2,3,1,2,1,1,1,1,1,1,2,0] |
Phi of -K |
[-2,-2,-1,0,2,3,0,-1,1,3,2,0,1,3,3,0,1,1,1,2,2] |
Phi of K* |
[-3,-2,0,1,2,2,2,2,1,2,3,1,1,3,3,0,1,1,-1,0,0] |
Phi of -K* |
[-2,-2,-1,0,2,3,0,1,1,1,2,2,1,1,3,1,2,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
3z+7 |
Enhanced Jones-Krushkal polynomial |
-12w^3z+15w^2z+7w |
Inner characteristic polynomial |
t^6+39t^4+12t^2 |
Outer characteristic polynomial |
t^7+61t^5+45t^3 |
Flat arrow polynomial |
4*K1**3 - 2*K1**2 - 6*K1*K2 + K2 + 2*K3 + 2 |
2-strand cable arrow polynomial |
-1536*K1**2*K2**4 + 1088*K1**2*K2**3 - 2544*K1**2*K2**2 + 1256*K1**2*K2 - 16*K1**2*K3**2 - 128*K1**2*K4**2 - 1180*K1**2 + 1568*K1*K2**3*K3 + 2416*K1*K2*K3 + 200*K1*K3*K4 + 216*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 608*K2**2*K3**2 - 56*K2**2*K4**2 + 144*K2**2*K4 - 352*K2**2 + 176*K2*K3*K5 + 32*K2*K4*K6 - 16*K3**4 + 24*K3**2*K6 - 804*K3**2 - 186*K4**2 - 112*K5**2 - 16*K6**2 + 1096 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice |
False |