Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.873

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,0,1,2,2,0,1,1,2,1,0,0,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.873']
Arrow polynomial of the knot is: -8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 8*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.873']
Outer characteristic polynomial of the knot is: t^7+62t^5+50t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.873']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 608*K1**4*K2 - 2592*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 256*K1**3*K3 + 256*K1**2*K2**5 - 1664*K1**2*K2**4 + 3744*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 9040*K1**2*K2**2 - 448*K1**2*K2*K4 + 8224*K1**2*K2 - 192*K1**2*K3**2 - 32*K1**2*K4**2 - 3908*K1**2 + 128*K1*K2**5*K3 - 896*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2400*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 6360*K1*K2*K3 + 592*K1*K3*K4 + 96*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 928*K2**6 - 128*K2**5*K6 - 64*K2**4*K3**2 - 64*K2**4*K4**2 + 1408*K2**4*K4 - 3712*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 976*K2**2*K3**2 - 424*K2**2*K4**2 + 2048*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 1404*K2**2 - 32*K2*K3**2*K4 + 264*K2*K3*K5 + 80*K2*K4*K6 - 1440*K3**2 - 510*K4**2 - 60*K5**2 - 4*K6**2 + 3516
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.873']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17087', 'vk6.17328', 'vk6.20247', 'vk6.21554', 'vk6.23473', 'vk6.23810', 'vk6.27474', 'vk6.29071', 'vk6.35614', 'vk6.36060', 'vk6.38889', 'vk6.41091', 'vk6.42987', 'vk6.43297', 'vk6.45650', 'vk6.47385', 'vk6.55232', 'vk6.55482', 'vk6.57074', 'vk6.58227', 'vk6.59632', 'vk6.59977', 'vk6.61610', 'vk6.62786', 'vk6.65031', 'vk6.65231', 'vk6.66702', 'vk6.67561', 'vk6.68301', 'vk6.68449', 'vk6.69356', 'vk6.70100']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U5O6O5U3U4U2U6
R3 orbit {'O1O2O3O4U1U5O6O5U3U4U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U1U2O6O5U6U4
Gauss code of K* O1O2O3O4U5U3U1U2O5O6U4U6
Gauss code of -K* O1O2O3O4U5U1O5O6U3U4U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 -1 1 1 2],[ 3 0 3 1 2 3 3],[ 0 -3 0 -1 1 0 2],[ 1 -1 1 0 1 1 1],[-1 -2 -1 -1 0 -1 0],[-1 -3 0 -1 1 0 2],[-2 -3 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -2 -1 -3],[-1 0 0 -1 -1 -1 -2],[-1 2 1 0 0 -1 -3],[ 0 2 1 0 0 -1 -3],[ 1 1 1 1 1 0 -1],[ 3 3 2 3 3 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,0,2,2,1,3,1,1,1,2,0,1,3,1,3,1]
Phi over symmetry [-3,-1,0,1,1,2,1,0,1,2,2,0,1,1,2,1,0,0,-1,-1,1]
Phi of -K [-3,-1,0,1,1,2,1,0,1,2,2,0,1,1,2,1,0,0,-1,-1,1]
Phi of K* [-2,-1,-1,0,1,3,-1,1,0,2,2,1,1,1,1,0,1,2,0,0,1]
Phi of -K* [-3,-1,0,1,1,2,1,3,2,3,3,1,1,1,1,1,0,2,-1,0,2]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 2z^2+15z+23
Enhanced Jones-Krushkal polynomial -2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w
Inner characteristic polynomial t^6+46t^4+13t^2
Outer characteristic polynomial t^7+62t^5+50t^3+7t
Flat arrow polynomial -8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 8*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 5*K2 + 6
2-strand cable arrow polynomial -192*K1**4*K2**2 + 608*K1**4*K2 - 2592*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 256*K1**3*K3 + 256*K1**2*K2**5 - 1664*K1**2*K2**4 + 3744*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 9040*K1**2*K2**2 - 448*K1**2*K2*K4 + 8224*K1**2*K2 - 192*K1**2*K3**2 - 32*K1**2*K4**2 - 3908*K1**2 + 128*K1*K2**5*K3 - 896*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2400*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 6360*K1*K2*K3 + 592*K1*K3*K4 + 96*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 928*K2**6 - 128*K2**5*K6 - 64*K2**4*K3**2 - 64*K2**4*K4**2 + 1408*K2**4*K4 - 3712*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 976*K2**2*K3**2 - 424*K2**2*K4**2 + 2048*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 1404*K2**2 - 32*K2*K3**2*K4 + 264*K2*K3*K5 + 80*K2*K4*K6 - 1440*K3**2 - 510*K4**2 - 60*K5**2 - 4*K6**2 + 3516
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact