Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,0,1,2,2,0,1,1,2,1,0,0,-1,-1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.873'] |
Arrow polynomial of the knot is: -8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 8*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 5*K2 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.873'] |
Outer characteristic polynomial of the knot is: t^7+62t^5+50t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.873'] |
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 608*K1**4*K2 - 2592*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 256*K1**3*K3 + 256*K1**2*K2**5 - 1664*K1**2*K2**4 + 3744*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 9040*K1**2*K2**2 - 448*K1**2*K2*K4 + 8224*K1**2*K2 - 192*K1**2*K3**2 - 32*K1**2*K4**2 - 3908*K1**2 + 128*K1*K2**5*K3 - 896*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2400*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 6360*K1*K2*K3 + 592*K1*K3*K4 + 96*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 928*K2**6 - 128*K2**5*K6 - 64*K2**4*K3**2 - 64*K2**4*K4**2 + 1408*K2**4*K4 - 3712*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 976*K2**2*K3**2 - 424*K2**2*K4**2 + 2048*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 1404*K2**2 - 32*K2*K3**2*K4 + 264*K2*K3*K5 + 80*K2*K4*K6 - 1440*K3**2 - 510*K4**2 - 60*K5**2 - 4*K6**2 + 3516 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.873'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17087', 'vk6.17328', 'vk6.20247', 'vk6.21554', 'vk6.23473', 'vk6.23810', 'vk6.27474', 'vk6.29071', 'vk6.35614', 'vk6.36060', 'vk6.38889', 'vk6.41091', 'vk6.42987', 'vk6.43297', 'vk6.45650', 'vk6.47385', 'vk6.55232', 'vk6.55482', 'vk6.57074', 'vk6.58227', 'vk6.59632', 'vk6.59977', 'vk6.61610', 'vk6.62786', 'vk6.65031', 'vk6.65231', 'vk6.66702', 'vk6.67561', 'vk6.68301', 'vk6.68449', 'vk6.69356', 'vk6.70100'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U5O6O5U3U4U2U6 |
R3 orbit | {'O1O2O3O4U1U5O6O5U3U4U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U3U1U2O6O5U6U4 |
Gauss code of K* | O1O2O3O4U5U3U1U2O5O6U4U6 |
Gauss code of -K* | O1O2O3O4U5U1O5O6U3U4U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 0 -1 1 1 2],[ 3 0 3 1 2 3 3],[ 0 -3 0 -1 1 0 2],[ 1 -1 1 0 1 1 1],[-1 -2 -1 -1 0 -1 0],[-1 -3 0 -1 1 0 2],[-2 -3 -2 -1 0 -2 0]] |
Primitive based matrix | [[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -2 -1 -3],[-1 0 0 -1 -1 -1 -2],[-1 2 1 0 0 -1 -3],[ 0 2 1 0 0 -1 -3],[ 1 1 1 1 1 0 -1],[ 3 3 2 3 3 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,0,1,3,0,2,2,1,3,1,1,1,2,0,1,3,1,3,1] |
Phi over symmetry | [-3,-1,0,1,1,2,1,0,1,2,2,0,1,1,2,1,0,0,-1,-1,1] |
Phi of -K | [-3,-1,0,1,1,2,1,0,1,2,2,0,1,1,2,1,0,0,-1,-1,1] |
Phi of K* | [-2,-1,-1,0,1,3,-1,1,0,2,2,1,1,1,1,0,1,2,0,0,1] |
Phi of -K* | [-3,-1,0,1,1,2,1,3,2,3,3,1,1,1,1,1,0,2,-1,0,2] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 2z^2+15z+23 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+4w^3z^2-6w^3z+21w^2z+23w |
Inner characteristic polynomial | t^6+46t^4+13t^2 |
Outer characteristic polynomial | t^7+62t^5+50t^3+7t |
Flat arrow polynomial | -8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 8*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 5*K2 + 6 |
2-strand cable arrow polynomial | -192*K1**4*K2**2 + 608*K1**4*K2 - 2592*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 - 256*K1**3*K3 + 256*K1**2*K2**5 - 1664*K1**2*K2**4 + 3744*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 9040*K1**2*K2**2 - 448*K1**2*K2*K4 + 8224*K1**2*K2 - 192*K1**2*K3**2 - 32*K1**2*K4**2 - 3908*K1**2 + 128*K1*K2**5*K3 - 896*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2400*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1120*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 6360*K1*K2*K3 + 592*K1*K3*K4 + 96*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 928*K2**6 - 128*K2**5*K6 - 64*K2**4*K3**2 - 64*K2**4*K4**2 + 1408*K2**4*K4 - 3712*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 976*K2**2*K3**2 - 424*K2**2*K4**2 + 2048*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 1404*K2**2 - 32*K2*K3**2*K4 + 264*K2*K3*K5 + 80*K2*K4*K6 - 1440*K3**2 - 510*K4**2 - 60*K5**2 - 4*K6**2 + 3516 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |