Gauss code |
O1O2O3O4U1U4O5O6U5U3U2U6 |
R3 orbit |
{'O1O2O3O4U1U4O5O6U5U3U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U3U2U6O5O6U1U4 |
Gauss code of K* |
O1O2O3O4U5U3U2U6O5O6U1U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 0 1 -1 3],[ 3 0 3 2 1 0 2],[ 0 -3 0 0 0 0 3],[ 0 -2 0 0 0 0 2],[-1 -1 0 0 0 0 0],[ 1 0 0 0 0 0 1],[-3 -2 -3 -2 0 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -1 -3],[-3 0 0 -2 -3 -1 -2],[-1 0 0 0 0 0 -1],[ 0 2 0 0 0 0 -2],[ 0 3 0 0 0 0 -3],[ 1 1 0 0 0 0 0],[ 3 2 1 2 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,1,3,0,2,3,1,2,0,0,0,1,0,0,2,0,3,0] |
Phi over symmetry |
[-3,-1,0,0,1,3,0,2,3,1,2,0,0,0,1,0,0,2,0,3,0] |
Phi of -K |
[-3,-1,0,0,1,3,2,0,1,3,4,1,1,2,3,0,1,0,1,1,2] |
Phi of K* |
[-3,-1,0,0,1,3,2,0,1,3,4,1,1,2,3,0,1,0,1,1,2] |
Phi of -K* |
[-3,-1,0,0,1,3,0,2,3,1,2,0,0,0,1,0,0,2,0,3,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z+15 |
Enhanced Jones-Krushkal polynomial |
-8w^3z+15w^2z+15w |
Inner characteristic polynomial |
t^6+32t^4+27t^2 |
Outer characteristic polynomial |
t^7+52t^5+83t^3 |
Flat arrow polynomial |
-4*K1*K2 + 2*K1 - 4*K2**2 + 2*K3 + 2*K4 + 3 |
2-strand cable arrow polynomial |
-416*K1**4 + 192*K1**3*K3*K4 + 160*K1**2*K2 - 576*K1**2*K3**2 - 544*K1**2*K4**2 - 840*K1**2 + 768*K1*K2*K3 + 1856*K1*K3*K4 + 544*K1*K4*K5 - 16*K2**2*K4**2 + 128*K2**2*K4 - 428*K2**2 + 80*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 - 96*K3**2*K4**2 + 16*K3**2*K6 - 968*K3**2 + 64*K3*K4*K7 - 48*K4**4 + 32*K4**2*K8 - 888*K4**2 - 200*K5**2 - 4*K6**2 - 8*K7**2 - 4*K8**2 + 1210 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}]] |
If K is slice |
True |