Gauss code |
O1O2O3O4U1U4O5O6U5U2U6U3 |
R3 orbit |
{'O1O2O3O4U1U4O5O6U5U2U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5U3U6O5O6U1U4 |
Gauss code of K* |
O1O2O3O4U5U2U4U6O5O6U1U3 |
Gauss code of -K* |
O1O2O3O4U2U4O5O6U5U1U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 2 1 -1 2],[ 3 0 2 3 1 0 1],[ 1 -2 0 2 0 0 2],[-2 -3 -2 0 0 -1 1],[-1 -1 0 0 0 0 0],[ 1 0 0 1 0 0 1],[-2 -1 -2 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 1 0 -1 -2 -3],[-2 -1 0 0 -1 -2 -1],[-1 0 0 0 0 0 -1],[ 1 1 1 0 0 0 0],[ 1 2 2 0 0 0 -2],[ 3 3 1 1 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,-1,0,1,2,3,0,1,2,1,0,0,1,0,0,2] |
Phi over symmetry |
[-3,-1,-1,1,2,2,0,2,1,1,3,0,0,1,1,0,2,2,0,0,-1] |
Phi of -K |
[-3,-1,-1,1,2,2,0,2,3,2,4,0,2,1,1,2,2,2,1,1,-1] |
Phi of K* |
[-2,-2,-1,1,1,3,-1,1,1,2,4,1,1,2,2,2,2,3,0,0,2] |
Phi of -K* |
[-3,-1,-1,1,2,2,0,2,1,1,3,0,0,1,1,0,2,2,0,0,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+26t^4+27t^2 |
Outer characteristic polynomial |
t^7+46t^5+65t^3+4t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 2*K2 + 2*K3 + K4 + 4 |
2-strand cable arrow polynomial |
-64*K1**6 + 672*K1**4*K2 - 2016*K1**4 + 224*K1**3*K2*K3 + 64*K1**3*K3*K4 - 768*K1**3*K3 - 128*K1**2*K2**4 + 256*K1**2*K2**3 + 160*K1**2*K2**2*K4 - 2848*K1**2*K2**2 + 352*K1**2*K2*K3**2 + 128*K1**2*K2*K4**2 - 704*K1**2*K2*K4 + 5744*K1**2*K2 - 1312*K1**2*K3**2 - 64*K1**2*K3*K5 - 336*K1**2*K4**2 - 4308*K1**2 + 384*K1*K2**3*K3 - 736*K1*K2**2*K3 - 128*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 512*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5704*K1*K2*K3 - 192*K1*K2*K4*K5 - 64*K1*K2*K4*K7 - 64*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 2240*K1*K3*K4 + 432*K1*K4*K5 + 64*K1*K5*K6 + 48*K1*K6*K7 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 96*K2**4*K4 - 456*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 + 64*K2**2*K3**2*K4 - 576*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 248*K2**2*K4**2 - 32*K2**2*K4*K8 + 944*K2**2*K4 - 8*K2**2*K6**2 - 3272*K2**2 + 592*K2*K3*K5 + 288*K2*K4*K6 + 32*K2*K5*K7 + 8*K2*K6*K8 - 64*K3**4 - 48*K3**2*K4**2 + 136*K3**2*K6 - 2104*K3**2 + 96*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 924*K4**2 - 212*K5**2 - 112*K6**2 - 48*K7**2 - 2*K8**2 + 3716 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |