Gauss code |
O1O2O3O4U1U4O5O6U5U2U3U6 |
R3 orbit |
{'O1O2O3O4U1U4O5O6U5U2U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U2U3U6O5O6U1U4 |
Gauss code of K* |
O1O2O3O4U5U2U3U6O5O6U1U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 1 1 -1 3],[ 3 0 2 3 1 0 2],[ 1 -2 0 1 0 0 3],[-1 -3 -1 0 0 0 2],[-1 -1 0 0 0 0 0],[ 1 0 0 0 0 0 1],[-3 -2 -3 -2 0 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -1 -3],[-3 0 0 -2 -1 -3 -2],[-1 0 0 0 0 0 -1],[-1 2 0 0 0 -1 -3],[ 1 1 0 0 0 0 0],[ 1 3 0 1 0 0 -2],[ 3 2 1 3 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,1,3,0,2,1,3,2,0,0,0,1,0,1,3,0,0,2] |
Phi over symmetry |
[-3,-1,-1,1,1,3,0,2,1,3,2,0,0,0,1,0,1,3,0,0,2] |
Phi of -K |
[-3,-1,-1,1,1,3,0,2,1,3,4,0,1,2,1,2,2,3,0,0,2] |
Phi of K* |
[-3,-1,-1,1,1,3,0,2,1,3,4,0,1,2,1,2,2,3,0,0,2] |
Phi of -K* |
[-3,-1,-1,1,1,3,0,2,1,3,2,0,0,0,1,0,1,3,0,0,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+33t^4+38t^2+1 |
Outer characteristic polynomial |
t^7+55t^5+106t^3+5t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 12*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-128*K1**6 - 512*K1**4*K2**2 + 1088*K1**4*K2 - 2496*K1**4 + 576*K1**3*K2*K3 - 256*K1**3*K3 - 512*K1**2*K2**4 + 960*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 5888*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 7312*K1**2*K2 - 256*K1**2*K3**2 - 96*K1**2*K4**2 - 4024*K1**2 + 1600*K1*K2**3*K3 + 640*K1*K2**2*K3*K4 - 1408*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 448*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 6240*K1*K2*K3 + 928*K1*K3*K4 + 80*K1*K4*K5 - 64*K2**6 - 128*K2**4*K3**2 - 64*K2**4*K4**2 + 192*K2**4*K4 - 1520*K2**4 + 192*K2**3*K3*K5 + 128*K2**3*K4*K6 - 128*K2**3*K6 - 1216*K2**2*K3**2 - 496*K2**2*K4**2 + 1920*K2**2*K4 - 96*K2**2*K5**2 - 48*K2**2*K6**2 - 3112*K2**2 + 528*K2*K3*K5 + 160*K2*K4*K6 - 1664*K3**2 - 576*K4**2 - 56*K5**2 - 24*K6**2 + 3630 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}]] |
If K is slice |
True |