Gauss code |
O1O2O3O4U1U3O5O6U5U4U2U6 |
R3 orbit |
{'O1O2O3O4U1U3O5O6U5U4U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U3U1U6O5O6U2U4 |
Gauss code of K* |
O1O2O3O4U5U3U6U2O5O6U1U4 |
Gauss code of -K* |
O1O2O3O4U1U4O5O6U3U5U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 0 1 -1 3],[ 3 0 3 1 2 0 2],[ 0 -3 0 -1 1 0 3],[ 0 -1 1 0 1 0 1],[-1 -2 -1 -1 0 0 2],[ 1 0 0 0 0 0 1],[-3 -2 -3 -1 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -1 -3],[-3 0 -2 -1 -3 -1 -2],[-1 2 0 -1 -1 0 -2],[ 0 1 1 0 1 0 -1],[ 0 3 1 -1 0 0 -3],[ 1 1 0 0 0 0 0],[ 3 2 2 1 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,1,3,2,1,3,1,2,1,1,0,2,-1,0,1,0,3,0] |
Phi over symmetry |
[-3,-1,0,0,1,3,0,0,2,3,4,0,0,2,2,-1,1,0,1,2,2] |
Phi of -K |
[-3,-1,0,0,1,3,2,0,2,2,4,1,1,2,3,1,0,0,0,2,0] |
Phi of K* |
[-3,-1,0,0,1,3,0,0,2,3,4,0,0,2,2,-1,1,0,1,2,2] |
Phi of -K* |
[-3,-1,0,0,1,3,0,1,3,2,2,0,0,0,1,1,1,1,1,3,2] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+36t^4+29t^2 |
Outer characteristic polynomial |
t^7+56t^5+97t^3+10t |
Flat arrow polynomial |
12*K1**3 + 4*K1**2*K2 - 12*K1**2 - 8*K1*K2 - 4*K1*K3 - 5*K1 + 6*K2 + K3 + K4 + 6 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 384*K1**4*K2 - 2176*K1**4 + 128*K1**3*K2**3*K3 + 1056*K1**3*K2*K3 - 704*K1**3*K3 - 384*K1**2*K2**4 + 608*K1**2*K2**3 - 384*K1**2*K2**2*K3**2 - 7728*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 10808*K1**2*K2 - 864*K1**2*K3**2 - 48*K1**2*K4**2 - 8072*K1**2 + 2080*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1568*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 1056*K1*K2**2*K5 + 224*K1*K2*K3**3 - 576*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 11144*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1712*K1*K3*K4 + 448*K1*K4*K5 + 32*K1*K5*K6 + 8*K1*K6*K7 - 96*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2736*K2**4 + 160*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1920*K2**2*K3**2 - 64*K2**2*K3*K7 - 272*K2**2*K4**2 - 32*K2**2*K4*K8 + 3432*K2**2*K4 - 144*K2**2*K5**2 - 16*K2**2*K6**2 - 6322*K2**2 - 64*K2*K3**2*K4 + 1896*K2*K3*K5 + 280*K2*K4*K6 + 112*K2*K5*K7 + 16*K2*K6*K8 - 32*K3**4 + 32*K3**2*K6 - 3636*K3**2 + 24*K3*K4*K7 - 1304*K4**2 - 508*K5**2 - 62*K6**2 - 32*K7**2 - 2*K8**2 + 6952 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{6}, {3, 5}, {1, 4}, {2}]] |
If K is slice |
False |