Gauss code |
O1O2O3O4O5O6U2U5U1U4U6U3 |
R3 orbit |
{'O1O2O3O4O5O6U2U5U1U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U1U3U6U2U5 |
Gauss code of K* |
O1O2O3O4O5O6U3U1U6U4U2U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U5U3U1U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -4 2 1 0 4],[ 3 0 -1 4 2 1 4],[ 4 1 0 4 2 1 3],[-2 -4 -4 0 -1 -1 2],[-1 -2 -2 1 0 0 2],[ 0 -1 -1 1 0 0 1],[-4 -4 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 2 1 0 -3 -4],[-4 0 -2 -2 -1 -4 -3],[-2 2 0 -1 -1 -4 -4],[-1 2 1 0 0 -2 -2],[ 0 1 1 0 0 -1 -1],[ 3 4 4 2 1 0 -1],[ 4 3 4 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,0,3,4,2,2,1,4,3,1,1,4,4,0,2,2,1,1,1] |
Phi over symmetry |
[-4,-3,0,1,2,4,0,3,3,2,5,2,2,1,3,1,1,3,0,1,0] |
Phi of -K |
[-4,-3,0,1,2,4,0,3,3,2,5,2,2,1,3,1,1,3,0,1,0] |
Phi of K* |
[-4,-2,-1,0,3,4,0,1,3,3,5,0,1,1,2,1,2,3,2,3,0] |
Phi of -K* |
[-4,-3,0,1,2,4,1,1,2,4,3,1,2,4,4,0,1,1,1,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+20w^2z+29w |
Inner characteristic polynomial |
t^6+79t^4+15t^2 |
Outer characteristic polynomial |
t^7+125t^5+94t^3+4t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 10*K1**2 - 6*K1*K2 - 4*K1*K3 - 3*K1 + 5*K2 + K3 + K4 + 5 |
2-strand cable arrow polynomial |
96*K1**4*K2 - 720*K1**4 - 32*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 - 3376*K1**2*K2**2 - 288*K1**2*K2*K4 + 5976*K1**2*K2 - 192*K1**2*K3**2 - 32*K1**2*K3*K5 - 16*K1**2*K4**2 - 5412*K1**2 + 768*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1664*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 256*K1*K2**2*K5 + 32*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6200*K1*K2*K3 - 32*K1*K2*K4*K5 + 1400*K1*K3*K4 + 296*K1*K4*K5 + 32*K1*K5*K6 + 8*K1*K7*K8 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 1384*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 160*K2**3*K6 + 96*K2**2*K3**2*K4 - 1120*K2**2*K3**2 - 64*K2**2*K3*K7 - 200*K2**2*K4**2 + 2320*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 4382*K2**2 - 64*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1096*K2*K3*K5 + 232*K2*K4*K6 + 64*K2*K5*K7 + 16*K2*K6*K8 - 48*K3**4 - 32*K3**2*K4**2 + 88*K3**2*K6 - 2456*K3**2 + 40*K3*K4*K7 - 1058*K4**2 - 332*K5**2 - 90*K6**2 - 24*K7**2 - 10*K8**2 + 4570 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |