Gauss code |
O1O2O3O4U1U3O5O6U4U6U2U5 |
R3 orbit |
{'O1O2O3O4U1U3O5O6U4U6U2U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U3U6U1O6O5U2U4 |
Gauss code of K* |
O1O2O3O4U5U3U6U1O5O6U4U2 |
Gauss code of -K* |
O1O2O3O4U3U1O5O6U4U5U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 0 0 0 2 1],[ 3 0 3 1 2 2 1],[ 0 -3 0 -1 0 2 1],[ 0 -1 1 0 1 1 1],[ 0 -2 0 -1 0 2 1],[-2 -2 -2 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 0 -3],[-2 0 0 -1 -2 -2 -2],[-1 0 0 -1 -1 -1 -1],[ 0 1 1 0 1 1 -1],[ 0 2 1 -1 0 0 -2],[ 0 2 1 -1 0 0 -3],[ 3 2 1 1 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,0,3,0,1,2,2,2,1,1,1,1,-1,-1,1,0,2,3] |
Phi over symmetry |
[-3,0,0,0,1,2,0,1,2,3,3,0,1,0,0,1,0,0,0,1,1] |
Phi of -K |
[-3,0,0,0,1,2,0,1,2,3,3,0,1,0,0,1,0,0,0,1,1] |
Phi of K* |
[-2,-1,0,0,0,3,1,0,0,1,3,0,0,0,3,0,-1,0,-1,1,2] |
Phi of -K* |
[-3,0,0,0,1,2,1,2,3,1,2,1,1,1,1,0,1,2,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+33t^4+15t^2+1 |
Outer characteristic polynomial |
t^7+47t^5+54t^3+7t |
Flat arrow polynomial |
8*K1**3 - 14*K1**2 - 10*K1*K2 - K1 + 7*K2 + 3*K3 + 8 |
2-strand cable arrow polynomial |
-192*K1**6 - 192*K1**4*K2**2 + 960*K1**4*K2 - 4736*K1**4 + 960*K1**3*K2*K3 + 64*K1**3*K3*K4 - 928*K1**3*K3 - 128*K1**2*K2**4 + 928*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 8160*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 832*K1**2*K2*K4 + 12744*K1**2*K2 - 1408*K1**2*K3**2 - 144*K1**2*K4**2 - 7132*K1**2 + 832*K1*K2**3*K3 - 1600*K1*K2**2*K3 - 384*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 10952*K1*K2*K3 + 1936*K1*K3*K4 + 144*K1*K4*K5 + 8*K1*K5*K6 - 192*K2**6 + 320*K2**4*K4 - 1816*K2**4 - 64*K2**3*K6 - 928*K2**2*K3**2 - 136*K2**2*K4**2 + 2080*K2**2*K4 - 5890*K2**2 - 32*K2*K3**2*K4 + 792*K2*K3*K5 + 64*K2*K4*K6 - 32*K3**4 + 48*K3**2*K6 - 3304*K3**2 - 814*K4**2 - 172*K5**2 - 22*K6**2 + 6468 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]] |
If K is slice |
False |