Gauss code |
O1O2O3O4U1U3O5O6U2U5U4U6 |
R3 orbit |
{'O1O2O3O4U1U3O5O6U2U5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U1U6U3O5O6U2U4 |
Gauss code of K* |
O1O2O3O4U5U1U6U3O5O6U2U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 0 2 0 3],[ 3 0 2 1 3 1 2],[ 2 -2 0 0 3 1 3],[ 0 -1 0 0 1 0 1],[-2 -3 -3 -1 0 0 2],[ 0 -1 -1 0 0 0 1],[-3 -2 -3 -1 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 0 0 -2 -3],[-3 0 -2 -1 -1 -3 -2],[-2 2 0 0 -1 -3 -3],[ 0 1 0 0 0 -1 -1],[ 0 1 1 0 0 0 -1],[ 2 3 3 1 0 0 -2],[ 3 2 3 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,0,2,3,2,1,1,3,2,0,1,3,3,0,1,1,0,1,2] |
Phi over symmetry |
[-3,-2,0,0,2,3,-1,2,2,2,4,1,2,1,2,0,2,2,1,2,-1] |
Phi of -K |
[-3,-2,0,0,2,3,-1,2,2,2,4,1,2,1,2,0,2,2,1,2,-1] |
Phi of K* |
[-3,-2,0,0,2,3,-1,2,2,2,4,1,2,1,2,0,2,2,1,2,-1] |
Phi of -K* |
[-3,-2,0,0,2,3,2,1,1,3,2,0,1,3,3,0,1,1,0,1,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+45t^4+12t^2 |
Outer characteristic polynomial |
t^7+71t^5+44t^3+4t |
Flat arrow polynomial |
16*K1**3 - 12*K1**2 - 12*K1*K2 - 6*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-2400*K1**4 + 2048*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1024*K1**3*K3 + 704*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 - 10176*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 1600*K1**2*K2*K4 + 14128*K1**2*K2 - 1632*K1**2*K3**2 - 128*K1**2*K4**2 - 9712*K1**2 + 2432*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 2560*K1*K2**2*K3 - 896*K1*K2**2*K5 + 512*K1*K2*K3**3 - 384*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 13312*K1*K2*K3 - 64*K1*K2*K4*K5 + 2016*K1*K3*K4 + 144*K1*K4*K5 + 32*K1*K5*K6 - 128*K2**6 + 192*K2**4*K4 - 2608*K2**4 - 64*K2**3*K6 - 1920*K2**2*K3**2 - 176*K2**2*K4**2 + 3264*K2**2*K4 - 6996*K2**2 + 1056*K2*K3*K5 + 160*K2*K4*K6 - 128*K3**4 - 3456*K3**2 - 916*K4**2 - 112*K5**2 - 36*K6**2 + 7306 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
If K is slice |
True |