Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.845

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,-1,2,1,3,3,2,1,1,2,0,1,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.845']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+69t^5+70t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.845']
2-strand cable arrow polynomial of the knot is: -256*K1**3*K3 - 384*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 2536*K1**2*K2 - 320*K1**2*K3**2 - 3056*K1**2 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 3008*K1*K2*K3 + 920*K1*K3*K4 + 304*K1*K4*K5 - 440*K2**4 - 480*K2**2*K3**2 - 72*K2**2*K4**2 + 1144*K2**2*K4 - 2454*K2**2 + 712*K2*K3*K5 + 72*K2*K4*K6 - 1408*K3**2 - 666*K4**2 - 264*K5**2 - 18*K6**2 + 2432
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.845']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71579', 'vk6.71698', 'vk6.72118', 'vk6.72318', 'vk6.73486', 'vk6.74110', 'vk6.74131', 'vk6.74681', 'vk6.74701', 'vk6.75245', 'vk6.75496', 'vk6.76148', 'vk6.76174', 'vk6.77197', 'vk6.77300', 'vk6.77505', 'vk6.77657', 'vk6.78449', 'vk6.79112', 'vk6.79134', 'vk6.80037', 'vk6.80187', 'vk6.80620', 'vk6.80635', 'vk6.83736', 'vk6.83865', 'vk6.85063', 'vk6.85349', 'vk6.86672', 'vk6.86965', 'vk6.87421', 'vk6.89535']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U3O5O6U2U4U6U5
R3 orbit {'O1O2O3O4U1U3O5O6U2U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U1U3O6O5U2U4
Gauss code of K* O1O2O3O4U5U1U6U2O5O6U4U3
Gauss code of -K* O1O2O3O4U2U1O5O6U3U5U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 1 2 2],[ 3 0 2 1 3 2 2],[ 2 -2 0 0 2 3 2],[ 0 -1 0 0 1 1 1],[-1 -3 -2 -1 0 2 1],[-2 -2 -3 -1 -2 0 0],[-2 -2 -2 -1 -1 0 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 0 -1 -1 -2 -2],[-2 0 0 -2 -1 -3 -2],[-1 1 2 0 -1 -2 -3],[ 0 1 1 1 0 0 -1],[ 2 2 3 2 0 0 -2],[ 3 2 2 3 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,0,1,1,2,2,2,1,3,2,1,2,3,0,1,2]
Phi over symmetry [-3,-2,0,1,2,2,-1,2,1,3,3,2,1,1,2,0,1,1,-1,0,0]
Phi of -K [-3,-2,0,1,2,2,-1,2,1,3,3,2,1,1,2,0,1,1,-1,0,0]
Phi of K* [-2,-2,-1,0,2,3,0,-1,1,1,3,0,1,2,3,0,1,1,2,2,-1]
Phi of -K* [-3,-2,0,1,2,2,2,1,3,2,2,0,2,2,3,1,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial 6w^3z^2+23w^2z+23w
Inner characteristic polynomial t^6+47t^4+15t^2
Outer characteristic polynomial t^7+69t^5+70t^3+4t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -256*K1**3*K3 - 384*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 2536*K1**2*K2 - 320*K1**2*K3**2 - 3056*K1**2 - 864*K1*K2**2*K3 - 96*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 3008*K1*K2*K3 + 920*K1*K3*K4 + 304*K1*K4*K5 - 440*K2**4 - 480*K2**2*K3**2 - 72*K2**2*K4**2 + 1144*K2**2*K4 - 2454*K2**2 + 712*K2*K3*K5 + 72*K2*K4*K6 - 1408*K3**2 - 666*K4**2 - 264*K5**2 - 18*K6**2 + 2432
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact