Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.838

Min(phi) over symmetries of the knot is: [-3,-1,0,0,1,3,-1,1,2,2,4,0,2,0,1,1,0,1,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.838']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+66t^5+95t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.838']
2-strand cable arrow polynomial of the knot is: -448*K1**4 - 768*K1**2*K2**4 + 1728*K1**2*K2**3 - 5008*K1**2*K2**2 - 256*K1**2*K2*K4 + 4880*K1**2*K2 - 3672*K1**2 + 1824*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 256*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4768*K1*K2*K3 + 392*K1*K3*K4 + 8*K1*K4*K5 - 768*K2**6 + 768*K2**4*K4 - 2576*K2**4 - 1232*K2**2*K3**2 - 352*K2**2*K4**2 + 1992*K2**2*K4 - 1608*K2**2 + 512*K2*K3*K5 + 160*K2*K4*K6 - 1308*K3**2 - 492*K4**2 - 44*K5**2 - 40*K6**2 + 2914
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.838']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71619', 'vk6.71779', 'vk6.72200', 'vk6.72348', 'vk6.73371', 'vk6.73532', 'vk6.75276', 'vk6.75542', 'vk6.77237', 'vk6.77316', 'vk6.77566', 'vk6.77678', 'vk6.78263', 'vk6.78512', 'vk6.80079', 'vk6.80227', 'vk6.81111', 'vk6.81177', 'vk6.81198', 'vk6.81236', 'vk6.81323', 'vk6.81511', 'vk6.82012', 'vk6.82431', 'vk6.82744', 'vk6.85461', 'vk6.86350', 'vk6.86916', 'vk6.87126', 'vk6.88089', 'vk6.88664', 'vk6.88770']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1U2O5O6U4U5U3U6
R3 orbit {'O1O2O3O4U1U2O5O6U4U5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U6U1O5O6U3U4
Gauss code of K* O1O2O3O4U5U6U3U1O5O6U2U4
Gauss code of -K* O1O2O3O4U1U3O5O6U4U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 1 0 0 3],[ 3 0 1 3 2 1 2],[ 1 -1 0 2 1 1 2],[-1 -3 -2 0 -1 1 3],[ 0 -2 -1 1 0 1 2],[ 0 -1 -1 -1 -1 0 1],[-3 -2 -2 -3 -2 -1 0]]
Primitive based matrix [[ 0 3 1 0 0 -1 -3],[-3 0 -3 -1 -2 -2 -2],[-1 3 0 1 -1 -2 -3],[ 0 1 -1 0 -1 -1 -1],[ 0 2 1 1 0 -1 -2],[ 1 2 2 1 1 0 -1],[ 3 2 3 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,1,3,3,1,2,2,2,-1,1,2,3,1,1,1,1,2,1]
Phi over symmetry [-3,-1,0,0,1,3,-1,1,2,2,4,0,2,0,1,1,0,1,0,2,1]
Phi of -K [-3,-1,0,0,1,3,1,1,2,1,4,0,0,0,2,-1,0,1,2,2,-1]
Phi of K* [-3,-1,0,0,1,3,-1,1,2,2,4,0,2,0,1,1,0,1,0,2,1]
Phi of -K* [-3,-1,0,0,1,3,1,1,2,3,2,1,1,2,2,-1,-1,1,1,2,3]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -4w^4z^2+8w^3z^2-4w^3z+21w^2z+19w
Inner characteristic polynomial t^6+46t^4+17t^2
Outer characteristic polynomial t^7+66t^5+95t^3+7t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -448*K1**4 - 768*K1**2*K2**4 + 1728*K1**2*K2**3 - 5008*K1**2*K2**2 - 256*K1**2*K2*K4 + 4880*K1**2*K2 - 3672*K1**2 + 1824*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 256*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4768*K1*K2*K3 + 392*K1*K3*K4 + 8*K1*K4*K5 - 768*K2**6 + 768*K2**4*K4 - 2576*K2**4 - 1232*K2**2*K3**2 - 352*K2**2*K4**2 + 1992*K2**2*K4 - 1608*K2**2 + 512*K2*K3*K5 + 160*K2*K4*K6 - 1308*K3**2 - 492*K4**2 - 44*K5**2 - 40*K6**2 + 2914
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact