Gauss code |
O1O2O3O4U1U2O5O6U3U4U5U6 |
R3 orbit |
{'O1O2O3O4U1U2O5O6U3U4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U1U2O5O6U3U4 |
Gauss code of K* |
O1O2O3O4U5U6U1U2O5O6U3U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 -1 1 1 3],[ 3 0 1 2 3 2 2],[ 1 -1 0 1 2 2 2],[ 1 -2 -1 0 1 2 3],[-1 -3 -2 -1 0 1 2],[-1 -2 -2 -2 -1 0 1],[-3 -2 -2 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -1 -3],[-3 0 -1 -2 -2 -3 -2],[-1 1 0 -1 -2 -2 -2],[-1 2 1 0 -2 -1 -3],[ 1 2 2 2 0 1 -1],[ 1 3 2 1 -1 0 -2],[ 3 2 2 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,1,3,1,2,2,3,2,1,2,2,2,2,1,3,-1,1,2] |
Phi over symmetry |
[-3,-1,-1,1,1,3,0,1,1,2,4,1,1,0,1,0,0,2,-1,0,1] |
Phi of -K |
[-3,-1,-1,1,1,3,0,1,1,2,4,1,1,0,1,0,0,2,-1,0,1] |
Phi of K* |
[-3,-1,-1,1,1,3,0,1,1,2,4,1,1,0,1,0,0,2,-1,0,1] |
Phi of -K* |
[-3,-1,-1,1,1,3,1,2,2,3,2,1,2,2,2,2,1,3,-1,1,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
z^2+6z+9 |
Enhanced Jones-Krushkal polynomial |
-6w^4z^2+7w^3z^2-16w^3z+22w^2z+9w |
Inner characteristic polynomial |
t^6+55t^4+23t^2+1 |
Outer characteristic polynomial |
t^7+77t^5+95t^3+19t |
Flat arrow polynomial |
16*K1**3 - 4*K1**2 - 8*K1*K2 - 8*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-128*K1**4 - 1280*K1**2*K2**4 + 3072*K1**2*K2**3 - 7072*K1**2*K2**2 - 192*K1**2*K2*K4 + 4912*K1**2*K2 - 2816*K1**2 + 2304*K1*K2**3*K3 - 1408*K1*K2**2*K3 - 384*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4192*K1*K2*K3 + 48*K1*K3*K4 + 16*K1*K4*K5 - 3584*K2**6 + 3328*K2**4*K4 - 5680*K2**4 - 448*K2**3*K6 - 672*K2**2*K3**2 - 352*K2**2*K4**2 + 3728*K2**2*K4 + 1248*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 664*K3**2 - 292*K4**2 - 8*K5**2 + 2034 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice |
True |