Gauss code |
O1O2O3O4O5O6U2U4U6U5U1U3 |
R3 orbit |
{'O1O2O3O4O5O6U2U4U6U5U1U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U6U2U1U3U5 |
Gauss code of K* |
O1O2O3O4O5O6U5U1U6U2U4U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U3U5U1U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -4 2 -1 2 2],[ 1 0 -3 2 -1 2 2],[ 4 3 0 4 1 3 2],[-2 -2 -4 0 -2 1 1],[ 1 1 -1 2 0 2 1],[-2 -2 -3 -1 -2 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 2 -1 -1 -4],[-2 0 1 1 -2 -2 -4],[-2 -1 0 0 -1 -2 -2],[-2 -1 0 0 -2 -2 -3],[ 1 2 1 2 0 1 -1],[ 1 2 2 2 -1 0 -3],[ 4 4 2 3 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,1,1,4,-1,-1,2,2,4,0,1,2,2,2,2,3,-1,1,3] |
Phi over symmetry |
[-4,-1,-1,2,2,2,0,2,2,3,4,1,1,1,1,1,1,2,-1,-1,0] |
Phi of -K |
[-4,-1,-1,2,2,2,0,2,2,3,4,1,1,1,1,1,1,2,-1,-1,0] |
Phi of K* |
[-2,-2,-2,1,1,4,-1,0,1,1,3,1,1,1,2,1,2,4,-1,0,2] |
Phi of -K* |
[-4,-1,-1,2,2,2,1,3,2,3,4,1,1,2,2,2,2,2,0,-1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-3t^2+2t |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
Inner characteristic polynomial |
t^6+63t^4+19t^2 |
Outer characteristic polynomial |
t^7+93t^5+66t^3+4t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial |
-768*K1**4 + 448*K1**3*K2*K3 + 32*K1**3*K3*K4 - 480*K1**3*K3 - 1376*K1**2*K2**2 - 480*K1**2*K2*K4 + 3120*K1**2*K2 - 1344*K1**2*K3**2 - 96*K1**2*K3*K5 - 96*K1**2*K4**2 - 3240*K1**2 + 64*K1*K2**3*K3 - 320*K1*K2**2*K3 + 160*K1*K2*K3**3 + 64*K1*K2*K3*K4**2 - 288*K1*K2*K3*K4 + 4560*K1*K2*K3 - 96*K1*K2*K4*K5 - 96*K1*K3**2*K5 - 64*K1*K3*K4*K6 + 2176*K1*K3*K4 + 312*K1*K4*K5 + 48*K1*K5*K6 - 104*K2**4 - 432*K2**2*K3**2 - 112*K2**2*K4**2 + 624*K2**2*K4 - 2564*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 616*K2*K3*K5 + 224*K2*K4*K6 + 16*K2*K5*K7 - 320*K3**4 - 144*K3**2*K4**2 + 264*K3**2*K6 - 1968*K3**2 + 128*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 914*K4**2 - 252*K5**2 - 100*K6**2 - 20*K7**2 - 2*K8**2 + 2946 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |