Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.827

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,1,1,2,1,3,-1,0,1,0,1,1,0,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.827']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+51t^5+104t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.827']
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 128*K1**4 - 64*K1**3*K3 - 192*K1**2*K2**4 + 512*K1**2*K2**3 - 4688*K1**2*K2**2 - 128*K1**2*K2*K4 + 4344*K1**2*K2 - 3272*K1**2 + 384*K1*K2**3*K3 - 192*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 4584*K1*K2*K3 + 128*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 824*K2**4 - 208*K2**2*K3**2 - 8*K2**2*K4**2 + 552*K2**2*K4 - 1904*K2**2 + 48*K2*K3*K5 - 1192*K3**2 - 134*K4**2 + 2316
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.827']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4730', 'vk6.5052', 'vk6.6258', 'vk6.6705', 'vk6.8227', 'vk6.8670', 'vk6.9610', 'vk6.9934', 'vk6.20658', 'vk6.22089', 'vk6.28148', 'vk6.29577', 'vk6.39586', 'vk6.41817', 'vk6.46205', 'vk6.47823', 'vk6.48770', 'vk6.48978', 'vk6.49574', 'vk6.49783', 'vk6.50780', 'vk6.50991', 'vk6.51262', 'vk6.51464', 'vk6.57574', 'vk6.58740', 'vk6.62248', 'vk6.63194', 'vk6.67044', 'vk6.67917', 'vk6.69673', 'vk6.70354']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U4U3U6U1O6U5
R3 orbit {'O1O2O3O4U2O5U4U3U6U1O6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5O6U4U6U2U1O5U3
Gauss code of K* O1O2O3O4U3O5U4U6U2U1O6U5
Gauss code of -K* O1O2O3O4U5O6U4U3U6U1O5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 -2 0 0 3 -1],[ 0 0 -2 1 1 2 0],[ 2 2 0 2 1 2 2],[ 0 -1 -2 0 0 2 0],[ 0 -1 -1 0 0 1 0],[-3 -2 -2 -2 -1 0 -3],[ 1 0 -2 0 0 3 0]]
Primitive based matrix [[ 0 3 0 0 0 -1 -2],[-3 0 -1 -2 -2 -3 -2],[ 0 1 0 0 -1 0 -1],[ 0 2 0 0 -1 0 -2],[ 0 2 1 1 0 0 -2],[ 1 3 0 0 0 0 -2],[ 2 2 1 2 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,0,0,0,1,2,1,2,2,3,2,0,1,0,1,1,0,2,0,2,2]
Phi over symmetry [-3,0,0,0,1,2,1,1,2,1,3,-1,0,1,0,1,1,0,1,1,-1]
Phi of -K [-2,-1,0,0,0,3,-1,0,0,1,3,1,1,1,1,-1,-1,1,0,1,2]
Phi of K* [-3,0,0,0,1,2,1,1,2,1,3,-1,0,1,0,1,1,0,1,1,-1]
Phi of -K* [-2,-1,0,0,0,3,2,1,2,2,2,0,0,0,3,-1,0,1,1,2,2]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2-8w^3z+26w^2z+17w
Inner characteristic polynomial t^6+37t^4+45t^2+1
Outer characteristic polynomial t^7+51t^5+104t^3+12t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial 96*K1**4*K2 - 128*K1**4 - 64*K1**3*K3 - 192*K1**2*K2**4 + 512*K1**2*K2**3 - 4688*K1**2*K2**2 - 128*K1**2*K2*K4 + 4344*K1**2*K2 - 3272*K1**2 + 384*K1*K2**3*K3 - 192*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 4584*K1*K2*K3 + 128*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 824*K2**4 - 208*K2**2*K3**2 - 8*K2**2*K4**2 + 552*K2**2*K4 - 1904*K2**2 + 48*K2*K3*K5 - 1192*K3**2 - 134*K4**2 + 2316
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact