Min(phi) over symmetries of the knot is: [-3,-1,-1,1,1,3,-1,1,1,2,4,0,0,0,1,0,1,2,0,-1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.810'] |
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931'] |
Outer characteristic polynomial of the knot is: t^7+85t^5+117t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.810'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 + 512*K1**4*K2**3 - 1792*K1**4*K2**2 + 2240*K1**4*K2 - 2592*K1**4 + 960*K1**3*K2*K3 - 128*K1**3*K3 - 896*K1**2*K2**4 + 2816*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 8896*K1**2*K2**2 - 448*K1**2*K2*K4 + 7712*K1**2*K2 - 224*K1**2*K3**2 - 3576*K1**2 + 1152*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 896*K1*K2**2*K3 + 5472*K1*K2*K3 + 112*K1*K3*K4 - 64*K2**6 + 64*K2**4*K4 - 1936*K2**4 - 544*K2**2*K3**2 - 48*K2**2*K4**2 + 832*K2**2*K4 - 1728*K2**2 + 64*K2*K3*K5 - 920*K3**2 - 44*K4**2 + 2922 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.810'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10921', 'vk6.10937', 'vk6.12086', 'vk6.12103', 'vk6.14474', 'vk6.15695', 'vk6.16139', 'vk6.30530', 'vk6.30562', 'vk6.31807', 'vk6.34065', 'vk6.34154', 'vk6.34501', 'vk6.51766', 'vk6.52635', 'vk6.54142', 'vk6.54335', 'vk6.54538', 'vk6.63471', 'vk6.63484'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is -. |
The reverse -K is |
The mirror image K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1O5U3U4U6U5O6U2 |
R3 orbit | {'O1O2O3O4U1O5U3U4U6U5O6U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3O5U6U5U1U2O6U4 |
Gauss code of K* | O1O2O3O4U3O5U6U5U1U2O6U4 |
Gauss code of -K* | Same |
Diagrammatic symmetry type | - |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -1 1 3 -1],[ 3 0 3 1 2 2 3],[-1 -3 0 -2 0 3 -2],[ 1 -1 2 0 1 2 0],[-1 -2 0 -1 0 1 -2],[-3 -2 -3 -2 -1 0 -3],[ 1 -3 2 0 2 3 0]] |
Primitive based matrix | [[ 0 3 1 1 -1 -1 -3],[-3 0 -1 -3 -2 -3 -2],[-1 1 0 0 -1 -2 -2],[-1 3 0 0 -2 -2 -3],[ 1 2 1 2 0 0 -1],[ 1 3 2 2 0 0 -3],[ 3 2 2 3 1 3 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,1,1,3,1,3,2,3,2,0,1,2,2,2,2,3,0,1,3] |
Phi over symmetry | [-3,-1,-1,1,1,3,-1,1,1,2,4,0,0,0,1,0,1,2,0,-1,1] |
Phi of -K | [-3,-1,-1,1,1,3,-1,1,1,2,4,0,0,0,1,0,1,2,0,-1,1] |
Phi of K* | [-3,-1,-1,1,1,3,-1,1,1,2,4,0,0,0,1,0,1,2,0,-1,1] |
Phi of -K* | [-3,-1,-1,1,1,3,1,3,2,3,2,0,1,2,2,2,2,3,0,1,3] |
Symmetry type of based matrix | - |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+27w^2z+31w |
Inner characteristic polynomial | t^6+63t^4+85t^2+4 |
Outer characteristic polynomial | t^7+85t^5+117t^3+6t |
Flat arrow polynomial | 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial | -128*K1**6 + 512*K1**4*K2**3 - 1792*K1**4*K2**2 + 2240*K1**4*K2 - 2592*K1**4 + 960*K1**3*K2*K3 - 128*K1**3*K3 - 896*K1**2*K2**4 + 2816*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 8896*K1**2*K2**2 - 448*K1**2*K2*K4 + 7712*K1**2*K2 - 224*K1**2*K3**2 - 3576*K1**2 + 1152*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 896*K1*K2**2*K3 + 5472*K1*K2*K3 + 112*K1*K3*K4 - 64*K2**6 + 64*K2**4*K4 - 1936*K2**4 - 544*K2**2*K3**2 - 48*K2**2*K4**2 + 832*K2**2*K4 - 1728*K2**2 + 64*K2*K3*K5 - 920*K3**2 - 44*K4**2 + 2922 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice | True |