Gauss code |
O1O2O3O4O5O6U2U4U5U1U6U3 |
R3 orbit |
{'O1O2O3O4O5O6U2U4U5U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U4U1U6U2U3U5 |
Gauss code of K* |
O1O2O3O4O5O6U4U1U6U2U3U5 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -4 2 -1 1 4],[ 2 0 -2 3 0 2 4],[ 4 2 0 4 1 2 3],[-2 -3 -4 0 -2 0 2],[ 1 0 -1 2 0 1 2],[-1 -2 -2 0 -1 0 1],[-4 -4 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 2 1 -1 -2 -4],[-4 0 -2 -1 -2 -4 -3],[-2 2 0 0 -2 -3 -4],[-1 1 0 0 -1 -2 -2],[ 1 2 2 1 0 0 -1],[ 2 4 3 2 0 0 -2],[ 4 3 4 2 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,1,2,4,2,1,2,4,3,0,2,3,4,1,2,2,0,1,2] |
Phi over symmetry |
[-4,-2,-1,1,2,4,0,2,3,2,5,1,1,1,2,1,1,3,1,2,0] |
Phi of -K |
[-4,-2,-1,1,2,4,0,2,3,2,5,1,1,1,2,1,1,3,1,2,0] |
Phi of K* |
[-4,-2,-1,1,2,4,0,2,3,2,5,1,1,1,2,1,1,3,1,2,0] |
Phi of -K* |
[-4,-2,-1,1,2,4,2,1,2,4,3,0,2,3,4,1,2,2,0,1,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+77t^4+20t^2 |
Outer characteristic polynomial |
t^7+119t^5+50t^3+4t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 12*K1**2 - 8*K1*K2 - 4*K1*K3 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-1568*K1**4 + 1728*K1**3*K2*K3 - 576*K1**3*K3 - 256*K1**2*K2**4 + 1344*K1**2*K2**3 - 1024*K1**2*K2**2*K3**2 - 11584*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 1728*K1**2*K2*K4 + 11488*K1**2*K2 - 992*K1**2*K3**2 - 96*K1**2*K4**2 - 7296*K1**2 + 256*K1*K2**3*K3**3 + 5312*K1*K2**3*K3 + 704*K1*K2**2*K3*K4 - 3072*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 1472*K1*K2**2*K5 + 384*K1*K2*K3**3 - 384*K1*K2*K3*K4 + 12240*K1*K2*K3 - 192*K1*K2*K4*K5 + 1648*K1*K3*K4 + 176*K1*K4*K5 + 32*K1*K5*K6 - 64*K2**6 - 768*K2**4*K3**2 - 64*K2**4*K4**2 + 384*K2**4*K4 - 5104*K2**4 + 576*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 128*K2**2*K3**4 - 3200*K2**2*K3**2 - 576*K2**2*K4**2 + 4304*K2**2*K4 - 256*K2**2*K5**2 - 16*K2**2*K6**2 - 3860*K2**2 + 1504*K2*K3*K5 + 208*K2*K4*K6 + 48*K2*K5*K7 - 64*K3**4 - 2888*K3**2 - 840*K4**2 - 152*K5**2 - 28*K6**2 + 5654 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
True |