Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.785

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,2,3,2,1,1,1,1,0,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.785']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+44t^5+104t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.785']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 576*K1**4*K2 - 1440*K1**4 + 160*K1**3*K2*K3 - 352*K1**3*K3 + 384*K1**2*K2**3 - 3088*K1**2*K2**2 - 224*K1**2*K2*K4 + 6184*K1**2*K2 - 64*K1**2*K3**2 - 4888*K1**2 + 96*K1*K2**3*K3 - 736*K1*K2**2*K3 + 4720*K1*K2*K3 + 584*K1*K3*K4 + 32*K1*K4*K5 - 312*K2**4 - 176*K2**2*K3**2 - 8*K2**2*K4**2 + 728*K2**2*K4 - 3686*K2**2 + 120*K2*K3*K5 + 8*K2*K4*K6 - 1652*K3**2 - 406*K4**2 - 44*K5**2 - 2*K6**2 + 3676
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.785']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11224', 'vk6.11303', 'vk6.12487', 'vk6.12598', 'vk6.18233', 'vk6.18568', 'vk6.24704', 'vk6.25117', 'vk6.30892', 'vk6.31015', 'vk6.32076', 'vk6.32195', 'vk6.36821', 'vk6.37282', 'vk6.44064', 'vk6.44403', 'vk6.51984', 'vk6.52079', 'vk6.52865', 'vk6.52912', 'vk6.56026', 'vk6.56300', 'vk6.60574', 'vk6.60912', 'vk6.63636', 'vk6.63681', 'vk6.64066', 'vk6.64111', 'vk6.65685', 'vk6.65975', 'vk6.68733', 'vk6.68941']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3O5U6U4U1O6U2U5
R3 orbit {'O1O2O3O4U3O5U6U4U1O6U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3O6U4U1U6O5U2
Gauss code of K* O1O2O3U1O4O5U3U4U6U2O6U5
Gauss code of -K* O1O2O3U4O5U2U5U6U1O4O6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 -1 1 3 -2],[ 1 0 0 -1 1 2 0],[ 0 0 0 -1 2 2 -1],[ 1 1 1 0 1 1 0],[-1 -1 -2 -1 0 0 -1],[-3 -2 -2 -1 0 0 -3],[ 2 0 1 0 1 3 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 0 -2 -1 -2 -3],[-1 0 0 -2 -1 -1 -1],[ 0 2 2 0 -1 0 -1],[ 1 1 1 1 0 1 0],[ 1 2 1 0 -1 0 0],[ 2 3 1 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,0,2,1,2,3,2,1,1,1,1,0,1,-1,0,0]
Phi over symmetry [-3,-1,0,1,1,2,0,2,1,2,3,2,1,1,1,1,0,1,-1,0,0]
Phi of -K [-2,-1,-1,0,1,3,1,1,1,2,2,-1,0,1,3,1,1,2,-1,1,2]
Phi of K* [-3,-1,0,1,1,2,2,1,2,3,2,-1,1,1,2,1,0,1,-1,1,1]
Phi of -K* [-2,-1,-1,0,1,3,0,0,1,1,3,-1,0,1,2,1,1,1,2,2,0]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 2z^2+19z+31
Enhanced Jones-Krushkal polynomial 2w^3z^2-4w^3z+23w^2z+31w
Inner characteristic polynomial t^6+28t^4+47t^2+4
Outer characteristic polynomial t^7+44t^5+104t^3+16t
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -192*K1**4*K2**2 + 576*K1**4*K2 - 1440*K1**4 + 160*K1**3*K2*K3 - 352*K1**3*K3 + 384*K1**2*K2**3 - 3088*K1**2*K2**2 - 224*K1**2*K2*K4 + 6184*K1**2*K2 - 64*K1**2*K3**2 - 4888*K1**2 + 96*K1*K2**3*K3 - 736*K1*K2**2*K3 + 4720*K1*K2*K3 + 584*K1*K3*K4 + 32*K1*K4*K5 - 312*K2**4 - 176*K2**2*K3**2 - 8*K2**2*K4**2 + 728*K2**2*K4 - 3686*K2**2 + 120*K2*K3*K5 + 8*K2*K4*K6 - 1652*K3**2 - 406*K4**2 - 44*K5**2 - 2*K6**2 + 3676
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact