Min(phi) over symmetries of the knot is: [-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.779'] |
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384'] |
Outer characteristic polynomial of the knot is: t^7+38t^5+73t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.779'] |
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 448*K1**4*K2 - 768*K1**4 + 128*K1**2*K2**3 - 800*K1**2*K2**2 + 1200*K1**2*K2 - 64*K1**2*K3**2 - 600*K1**2 + 688*K1*K2*K3 + 144*K1*K3*K4 - 96*K2**4 - 32*K2**2*K3**2 - 8*K2**2*K4**2 + 136*K2**2*K4 - 614*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 256*K3**2 - 108*K4**2 - 24*K5**2 - 2*K6**2 + 682 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.779'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4414', 'vk6.4509', 'vk6.5796', 'vk6.5923', 'vk6.6412', 'vk6.6843', 'vk6.7964', 'vk6.8373', 'vk6.9275', 'vk6.9394', 'vk6.17894', 'vk6.17959', 'vk6.18631', 'vk6.24397', 'vk6.25185', 'vk6.30038', 'vk6.30099', 'vk6.36906', 'vk6.37364', 'vk6.39840', 'vk6.43832', 'vk6.44127', 'vk6.44450', 'vk6.46402', 'vk6.47979', 'vk6.48621', 'vk6.49916', 'vk6.50601'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is +. |
The reverse -K is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U4U6U1O6U2U5 |
R3 orbit | {'O1O2O3O4U3O5U4U2U6U1O6U5', 'O1O2O3O4U3O5U4U6U1O6U2U5', 'O1O2O3U2O4O5U3U4U6U1O6U5'} |
R3 orbit length | 3 |
Gauss code of -K | O1O2O3O4U5U3O6U4U6U1O5U2 |
Gauss code of K* | Same |
Gauss code of -K* | O1O2O3U4O5U3U5U6U1O4O6U2 |
Diagrammatic symmetry type | + |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 -1 0 3 -1],[ 1 0 0 -1 1 2 1],[ 0 0 0 -1 1 2 0],[ 1 1 1 0 1 1 1],[ 0 -1 -1 -1 0 1 0],[-3 -2 -2 -1 -1 0 -3],[ 1 -1 0 -1 0 3 0]] |
Primitive based matrix | [[ 0 3 0 0 -1 -1 -1],[-3 0 -1 -2 -1 -2 -3],[ 0 1 0 -1 -1 -1 0],[ 0 2 1 0 -1 0 0],[ 1 1 1 1 0 1 1],[ 1 2 1 0 -1 0 1],[ 1 3 0 0 -1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Phi over symmetry | [-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Phi of -K | [-1,-1,-1,0,0,3,-1,-1,0,0,3,-1,0,1,2,1,1,1,1,2,1] |
Phi of K* | [-3,0,0,1,1,1,1,2,1,2,3,1,1,1,0,1,0,0,-1,-1,-1] |
Phi of -K* | [-1,-1,-1,0,0,3,-1,-1,0,0,3,-1,0,1,2,1,1,1,1,2,1] |
Symmetry type of based matrix | + |
u-polynomial | -t^3+3t |
Normalized Jones-Krushkal polynomial | 8z+17 |
Enhanced Jones-Krushkal polynomial | 8w^2z+17w |
Inner characteristic polynomial | t^6+26t^4+29t^2 |
Outer characteristic polynomial | t^7+38t^5+73t^3 |
Flat arrow polynomial | -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5 |
2-strand cable arrow polynomial | -128*K1**4*K2**2 + 448*K1**4*K2 - 768*K1**4 + 128*K1**2*K2**3 - 800*K1**2*K2**2 + 1200*K1**2*K2 - 64*K1**2*K3**2 - 600*K1**2 + 688*K1*K2*K3 + 144*K1*K3*K4 - 96*K2**4 - 32*K2**2*K3**2 - 8*K2**2*K4**2 + 136*K2**2*K4 - 614*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 256*K3**2 - 108*K4**2 - 24*K5**2 - 2*K6**2 + 682 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {5}, {3, 4}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | False |