Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,1,1,3,1,1,0,1,-1,1,1,1,2,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.777'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+35t^5+30t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.777'] |
2-strand cable arrow polynomial of the knot is: -512*K1**6 - 576*K1**4*K2**2 + 992*K1**4*K2 - 3216*K1**4 + 384*K1**3*K2*K3 - 3152*K1**2*K2**2 + 4712*K1**2*K2 - 48*K1**2*K3**2 - 244*K1**2 + 1880*K1*K2*K3 - 352*K2**4 + 208*K2**2*K4 - 968*K2**2 - 220*K3**2 - 16*K4**2 + 1126 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.777'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4689', 'vk6.4994', 'vk6.6171', 'vk6.6644', 'vk6.8164', 'vk6.8584', 'vk6.9554', 'vk6.9895', 'vk6.17383', 'vk6.20917', 'vk6.20985', 'vk6.22329', 'vk6.22409', 'vk6.23552', 'vk6.23891', 'vk6.28397', 'vk6.36143', 'vk6.40055', 'vk6.40186', 'vk6.42108', 'vk6.43056', 'vk6.43362', 'vk6.46587', 'vk6.46695', 'vk6.48729', 'vk6.49521', 'vk6.49726', 'vk6.51427', 'vk6.55541', 'vk6.58925', 'vk6.65287', 'vk6.69773'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U4U1U2O6U5U6 |
R3 orbit | {'O1O2O3O4U3O5U4U1U2O6U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6O5U3U4U1O6U2 |
Gauss code of K* | O1O2O3U4O5O4U2U3U6U1O6U5 |
Gauss code of -K* | O1O2O3U4O5U3U5U1U2O6O4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 -1 0 2 1],[ 2 0 1 -1 1 3 1],[ 0 -1 0 -1 1 2 1],[ 1 1 1 0 1 1 0],[ 0 -1 -1 -1 0 1 1],[-2 -3 -2 -1 -1 0 1],[-1 -1 -1 0 -1 -1 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 1 -1 -2 -1 -3],[-1 -1 0 -1 -1 0 -1],[ 0 1 1 0 -1 -1 -1],[ 0 2 1 1 0 -1 -1],[ 1 1 0 1 1 0 1],[ 2 3 1 1 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,-1,1,2,1,3,1,1,0,1,1,1,1,1,1,-1] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,1,1,1,3,1,1,0,1,-1,1,1,1,2,-1] |
Phi of -K | [-2,-1,0,0,1,2,2,1,1,2,1,0,0,2,2,-1,0,0,0,1,2] |
Phi of K* | [-2,-1,0,0,1,2,2,0,1,2,1,0,0,2,2,1,0,1,0,1,2] |
Phi of -K* | [-2,-1,0,0,1,2,-1,1,1,1,3,1,1,0,1,-1,1,1,1,2,-1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 13z+27 |
Enhanced Jones-Krushkal polynomial | 13w^2z+27w |
Inner characteristic polynomial | t^6+25t^4+8t^2 |
Outer characteristic polynomial | t^7+35t^5+30t^3 |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -512*K1**6 - 576*K1**4*K2**2 + 992*K1**4*K2 - 3216*K1**4 + 384*K1**3*K2*K3 - 3152*K1**2*K2**2 + 4712*K1**2*K2 - 48*K1**2*K3**2 - 244*K1**2 + 1880*K1*K2*K3 - 352*K2**4 + 208*K2**2*K4 - 968*K2**2 - 220*K3**2 - 16*K4**2 + 1126 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice | False |