Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.767

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,1,4,0,0,1,1,0,1,2,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.767']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+46t^5+67t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.767']
2-strand cable arrow polynomial of the knot is: 2240*K1**4*K2 - 6144*K1**4 + 1344*K1**3*K2*K3 - 1152*K1**3*K3 - 128*K1**2*K2**4 + 672*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6672*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 9152*K1**2*K2 - 1536*K1**2*K3**2 - 32*K1**2*K3*K5 - 32*K1**2*K4**2 - 2284*K1**2 + 256*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6176*K1*K2*K3 + 1216*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 632*K2**4 - 320*K2**2*K3**2 - 8*K2**2*K4**2 + 592*K2**2*K4 - 2816*K2**2 + 128*K2*K3*K5 - 1356*K3**2 - 222*K4**2 - 8*K5**2 + 3084
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.767']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13901', 'vk6.13998', 'vk6.14170', 'vk6.14411', 'vk6.14972', 'vk6.15095', 'vk6.15638', 'vk6.16094', 'vk6.16722', 'vk6.16753', 'vk6.16844', 'vk6.18814', 'vk6.19269', 'vk6.19563', 'vk6.23164', 'vk6.23227', 'vk6.25408', 'vk6.26460', 'vk6.33712', 'vk6.33789', 'vk6.34268', 'vk6.35148', 'vk6.37541', 'vk6.42737', 'vk6.44682', 'vk6.54121', 'vk6.54927', 'vk6.54956', 'vk6.56400', 'vk6.56606', 'vk6.59354', 'vk6.64594']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3O5U1U5U2O6U4U6
R3 orbit {'O1O2O3O4U3O5U1U5U2O6U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1O5U3U6U4O6U2
Gauss code of K* O1O2O3U4O5O4U1U3U6U5O6U2
Gauss code of -K* O1O2O3U2O4U5U4U1U3O6O5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 -1 2 1 1],[ 3 0 2 0 4 1 1],[ 0 -2 0 0 2 0 1],[ 1 0 0 0 1 0 1],[-2 -4 -2 -1 0 0 1],[-1 -1 0 0 0 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 1 0 -2 -1 -4],[-1 -1 0 0 -1 -1 -1],[-1 0 0 0 0 0 -1],[ 0 2 1 0 0 0 -2],[ 1 1 1 0 0 0 0],[ 3 4 1 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,-1,0,2,1,4,0,1,1,1,0,0,1,0,2,0]
Phi over symmetry [-3,-1,0,1,1,2,0,2,1,1,4,0,0,1,1,0,1,2,0,0,-1]
Phi of -K [-3,-1,0,1,1,2,2,1,3,3,1,1,1,2,2,0,1,0,0,2,1]
Phi of K* [-2,-1,-1,0,1,3,1,2,0,2,1,0,1,2,3,0,1,3,1,1,2]
Phi of -K* [-3,-1,0,1,1,2,0,2,1,1,4,0,0,1,1,0,1,2,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 7z^2+28z+29
Enhanced Jones-Krushkal polynomial 7w^3z^2+28w^2z+29w
Inner characteristic polynomial t^6+30t^4+26t^2+1
Outer characteristic polynomial t^7+46t^5+67t^3+5t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial 2240*K1**4*K2 - 6144*K1**4 + 1344*K1**3*K2*K3 - 1152*K1**3*K3 - 128*K1**2*K2**4 + 672*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6672*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 9152*K1**2*K2 - 1536*K1**2*K3**2 - 32*K1**2*K3*K5 - 32*K1**2*K4**2 - 2284*K1**2 + 256*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6176*K1*K2*K3 + 1216*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 632*K2**4 - 320*K2**2*K3**2 - 8*K2**2*K4**2 + 592*K2**2*K4 - 2816*K2**2 + 128*K2*K3*K5 - 1356*K3**2 - 222*K4**2 - 8*K5**2 + 3084
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact