Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,1,2,4,0,1,0,1,1,1,3,0,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.765'] |
Arrow polynomial of the knot is: 4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.233', '6.340', '6.382', '6.550', '6.656', '6.663', '6.683', '6.698', '6.739', '6.745', '6.759', '6.765', '6.1357', '6.1358', '6.1370'] |
Outer characteristic polynomial of the knot is: t^7+56t^5+111t^3+15t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.765'] |
2-strand cable arrow polynomial of the knot is: -1216*K1**2*K2**4 + 1952*K1**2*K2**3 - 6800*K1**2*K2**2 + 4800*K1**2*K2 - 2696*K1**2 + 1088*K1*K2**3*K3 - 640*K1*K2**2*K3 - 128*K1*K2**2*K5 + 4592*K1*K2*K3 - 288*K2**6 + 160*K2**4*K4 - 1504*K2**4 - 144*K2**2*K3**2 - 8*K2**2*K4**2 + 968*K2**2*K4 - 1088*K2**2 + 16*K2*K3*K5 - 824*K3**2 - 112*K4**2 + 1870 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.765'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16792', 'vk6.16796', 'vk6.16825', 'vk6.16829', 'vk6.18156', 'vk6.18158', 'vk6.18492', 'vk6.18494', 'vk6.23208', 'vk6.23212', 'vk6.24615', 'vk6.25028', 'vk6.25030', 'vk6.35226', 'vk6.35252', 'vk6.36750', 'vk6.37170', 'vk6.37172', 'vk6.42708', 'vk6.42711', 'vk6.44332', 'vk6.44334', 'vk6.54984', 'vk6.55020', 'vk6.55963', 'vk6.55965', 'vk6.59377', 'vk6.59381', 'vk6.60501', 'vk6.65627', 'vk6.68174', 'vk6.68178'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U1U2U5O6U4U6 |
R3 orbit | {'O1O2O3O4U3O5U1U2U5O6U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U1O5U6U3U4O6U2 |
Gauss code of K* | O1O2O3U4O5O4U1U2U6U5O6U3 |
Gauss code of -K* | O1O2O3U1O4U5U4U2U3O6O5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 -1 2 2 1],[ 3 0 1 0 4 2 1],[ 1 -1 0 0 3 1 1],[ 1 0 0 0 1 0 1],[-2 -4 -3 -1 0 0 1],[-2 -2 -1 0 0 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 2 2 1 -1 -1 -3],[-2 0 0 1 -1 -3 -4],[-2 0 0 0 0 -1 -2],[-1 -1 0 0 -1 -1 -1],[ 1 1 0 1 0 0 0],[ 1 3 1 1 0 0 -1],[ 3 4 2 1 0 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,1,1,3,0,-1,1,3,4,0,0,1,2,1,1,1,0,0,1] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,1,1,2,4,0,1,0,1,1,1,3,0,-1,0] |
Phi of -K | [-3,-1,-1,1,2,2,1,2,3,1,3,0,1,0,2,1,2,3,2,1,0] |
Phi of K* | [-2,-2,-1,1,1,3,0,1,2,3,3,2,0,2,1,1,1,3,0,1,2] |
Phi of -K* | [-3,-1,-1,1,2,2,0,1,1,2,4,0,1,0,1,1,1,3,0,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 2z^2+7z+7 |
Enhanced Jones-Krushkal polynomial | -4w^4z^2+6w^3z^2-16w^3z+23w^2z+7w |
Inner characteristic polynomial | t^6+36t^4+35t^2+1 |
Outer characteristic polynomial | t^7+56t^5+111t^3+15t |
Flat arrow polynomial | 4*K1**3 - 2*K1*K2 - 2*K1 + 1 |
2-strand cable arrow polynomial | -1216*K1**2*K2**4 + 1952*K1**2*K2**3 - 6800*K1**2*K2**2 + 4800*K1**2*K2 - 2696*K1**2 + 1088*K1*K2**3*K3 - 640*K1*K2**2*K3 - 128*K1*K2**2*K5 + 4592*K1*K2*K3 - 288*K2**6 + 160*K2**4*K4 - 1504*K2**4 - 144*K2**2*K3**2 - 8*K2**2*K4**2 + 968*K2**2*K4 - 1088*K2**2 + 16*K2*K3*K5 - 824*K3**2 - 112*K4**2 + 1870 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice | False |