Gauss code |
O1O2O3O4U2O5U6U5U4O6U1U3 |
R3 orbit |
{'O1O2O3O4U2O5U6U5U4O6U1U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U4O5U1U6U5O6U3 |
Gauss code of K* |
O1O2O3U1O4O5U4U6U5U3O6U2 |
Gauss code of -K* |
O1O2O3U2O4U1U5U4U6O5O6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 2 2 1 -2],[ 1 0 -1 2 2 1 -1],[ 2 1 0 2 1 0 1],[-2 -2 -2 0 1 1 -4],[-2 -2 -1 -1 0 0 -3],[-1 -1 0 -1 0 0 -1],[ 2 1 -1 4 3 1 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -2 -2],[-2 0 1 1 -2 -2 -4],[-2 -1 0 0 -2 -1 -3],[-1 -1 0 0 -1 0 -1],[ 1 2 2 1 0 -1 -1],[ 2 2 1 0 1 0 1],[ 2 4 3 1 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,2,2,-1,-1,2,2,4,0,2,1,3,1,0,1,1,1,-1] |
Phi over symmetry |
[-2,-2,-1,1,2,2,-1,-1,2,2,4,0,2,1,3,1,0,1,1,1,-1] |
Phi of -K |
[-2,-2,-1,1,2,2,-1,0,3,2,3,0,2,0,1,1,1,1,2,1,-1] |
Phi of K* |
[-2,-2,-1,1,2,2,-1,1,1,1,3,2,1,0,2,1,2,3,0,0,-1] |
Phi of -K* |
[-2,-2,-1,1,2,2,-1,1,1,3,4,1,0,1,2,1,2,2,0,-1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
19z+39 |
Enhanced Jones-Krushkal polynomial |
19w^2z+39w |
Inner characteristic polynomial |
t^6+45t^4+15t^2 |
Outer characteristic polynomial |
t^7+63t^5+37t^3+5t |
Flat arrow polynomial |
-12*K1**2 - 8*K1*K2 + 4*K1 + 6*K2 + 4*K3 + 7 |
2-strand cable arrow polynomial |
-128*K1**6 - 64*K1**4*K2**2 + 768*K1**4*K2 - 4224*K1**4 + 224*K1**3*K2*K3 - 1248*K1**3*K3 + 64*K1**2*K2**3 - 3680*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 9736*K1**2*K2 - 1440*K1**2*K3**2 - 128*K1**2*K3*K5 - 256*K1**2*K4**2 - 6096*K1**2 - 512*K1*K2**2*K3 - 64*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7896*K1*K2*K3 - 32*K1*K3**2*K5 + 2360*K1*K3*K4 + 336*K1*K4*K5 + 16*K1*K5*K6 - 304*K2**4 - 416*K2**2*K3**2 - 64*K2**2*K4**2 + 968*K2**2*K4 - 5104*K2**2 + 488*K2*K3*K5 + 64*K2*K4*K6 - 32*K3**4 + 40*K3**2*K6 - 2792*K3**2 - 928*K4**2 - 176*K5**2 - 24*K6**2 + 5390 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}]] |
If K is slice |
False |