Gauss code |
O1O2O3O4U2O5U6U5U1O6U3U4 |
R3 orbit |
{'O1O2O3O4U2O5U6U5U1O6U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U2O5U4U6U5O6U3 |
Gauss code of K* |
O1O2O3U1O4O5U3U6U4U5O6U2 |
Gauss code of -K* |
O1O2O3U2O4U5U6U4U1O5O6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 1 3 1 -2],[ 1 0 0 1 2 0 0],[ 2 0 0 1 2 0 2],[-1 -1 -1 0 1 1 -2],[-3 -2 -2 -1 0 1 -4],[-1 0 0 -1 -1 0 -1],[ 2 0 -2 2 4 1 0]] |
Primitive based matrix |
[[ 0 3 1 1 -1 -2 -2],[-3 0 1 -1 -2 -2 -4],[-1 -1 0 -1 0 0 -1],[-1 1 1 0 -1 -1 -2],[ 1 2 0 1 0 0 0],[ 2 2 0 1 0 0 2],[ 2 4 1 2 0 -2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,1,2,2,-1,1,2,2,4,1,0,0,1,1,1,2,0,0,-2] |
Phi over symmetry |
[-3,-1,-1,1,2,2,-1,1,2,2,4,1,0,0,1,1,1,2,0,0,-2] |
Phi of -K |
[-2,-2,-1,1,1,3,-2,1,2,3,3,1,1,2,1,1,2,2,-1,1,3] |
Phi of K* |
[-3,-1,-1,1,2,2,1,3,2,1,3,1,1,1,2,2,2,3,1,1,-2] |
Phi of -K* |
[-2,-2,-1,1,1,3,-2,0,1,2,4,0,0,1,2,0,1,2,-1,-1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+2t^2-t |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+38t^4+33t^2+4 |
Outer characteristic polynomial |
t^7+58t^5+53t^3+7t |
Flat arrow polynomial |
-4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial |
-1216*K1**4*K2**2 + 1920*K1**4*K2 - 2160*K1**4 + 896*K1**3*K2*K3 - 800*K1**3*K3 + 2656*K1**2*K2**3 - 8432*K1**2*K2**2 - 544*K1**2*K2*K4 + 7744*K1**2*K2 - 272*K1**2*K3**2 - 4312*K1**2 + 352*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 32*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 6896*K1*K2*K3 + 440*K1*K3*K4 + 88*K1*K4*K5 - 1648*K2**4 - 272*K2**2*K3**2 - 8*K2**2*K4**2 + 1304*K2**2*K4 - 2774*K2**2 + 192*K2*K3*K5 + 8*K2*K4*K6 - 1588*K3**2 - 328*K4**2 - 52*K5**2 - 2*K6**2 + 3446 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}], [{6}, {3, 5}, {1, 4}, {2}]] |
If K is slice |
False |