Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,2,2,2,3,2,1,2,2,0,2,1,1,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.757'] |
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354'] |
Outer characteristic polynomial of the knot is: t^7+57t^5+83t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.757'] |
2-strand cable arrow polynomial of the knot is: -480*K1**4 - 256*K1**3*K3 - 688*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 3152*K1**2*K2 - 128*K1**2*K3**2 - 2804*K1**2 - 256*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 1848*K1*K2*K3 + 432*K1*K3*K4 - 56*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 224*K2**2*K4 - 1822*K2**2 + 72*K2*K3*K5 + 8*K2*K4*K6 - 748*K3**2 - 202*K4**2 - 16*K5**2 - 2*K6**2 + 1856 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.757'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71364', 'vk6.71423', 'vk6.71886', 'vk6.71945', 'vk6.72457', 'vk6.72588', 'vk6.72706', 'vk6.72817', 'vk6.72880', 'vk6.73016', 'vk6.73367', 'vk6.73528', 'vk6.74263', 'vk6.74386', 'vk6.74440', 'vk6.75053', 'vk6.75537', 'vk6.75830', 'vk6.76436', 'vk6.76625', 'vk6.77029', 'vk6.77760', 'vk6.77810', 'vk6.78251', 'vk6.78500', 'vk6.78629', 'vk6.78822', 'vk6.79315', 'vk6.79424', 'vk6.79840', 'vk6.79888', 'vk6.80263', 'vk6.80776', 'vk6.80874', 'vk6.85158', 'vk6.86516', 'vk6.87225', 'vk6.87350', 'vk6.89273', 'vk6.89427'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2O5U6U3U1O6U4U5 |
R3 orbit | {'O1O2O3O4U2O5U6U3U1O6U4U5', 'O1O2O3O4U2O5U4U6U1U3O6U5'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4U5U1O6U4U2U6O5U3 |
Gauss code of K* | O1O2O3U1O4O5U3U6U2U4O6U5 |
Gauss code of -K* | O1O2O3U4O5U6U2U5U1O4O6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -2 0 2 3 -2],[ 1 0 -1 1 2 2 0],[ 2 1 0 1 2 2 1],[ 0 -1 -1 0 0 1 0],[-2 -2 -2 0 0 1 -2],[-3 -2 -2 -1 -1 0 -3],[ 2 0 -1 0 2 3 0]] |
Primitive based matrix | [[ 0 3 2 0 -1 -2 -2],[-3 0 -1 -1 -2 -2 -3],[-2 1 0 0 -2 -2 -2],[ 0 1 0 0 -1 -1 0],[ 1 2 2 1 0 -1 0],[ 2 2 2 1 1 0 1],[ 2 3 2 0 0 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,0,1,2,2,1,1,2,2,3,0,2,2,2,1,1,0,1,0,-1] |
Phi over symmetry | [-3,-2,0,1,2,2,0,2,2,2,3,2,1,2,2,0,2,1,1,0,-1] |
Phi of -K | [-2,-2,-1,0,2,3,-1,0,1,2,3,1,2,2,2,0,1,2,2,2,0] |
Phi of K* | [-3,-2,0,1,2,2,0,2,2,2,3,2,1,2,2,0,2,1,1,0,-1] |
Phi of -K* | [-2,-2,-1,0,2,3,-1,0,0,2,3,1,1,2,2,1,2,2,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+t^2+t |
Normalized Jones-Krushkal polynomial | z^2+14z+25 |
Enhanced Jones-Krushkal polynomial | w^3z^2+14w^2z+25w |
Inner characteristic polynomial | t^6+35t^4+36t^2+1 |
Outer characteristic polynomial | t^7+57t^5+83t^3+4t |
Flat arrow polynomial | -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial | -480*K1**4 - 256*K1**3*K3 - 688*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 3152*K1**2*K2 - 128*K1**2*K3**2 - 2804*K1**2 - 256*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 1848*K1*K2*K3 + 432*K1*K3*K4 - 56*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 224*K2**2*K4 - 1822*K2**2 + 72*K2*K3*K5 + 8*K2*K4*K6 - 748*K3**2 - 202*K4**2 - 16*K5**2 - 2*K6**2 + 1856 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]] |
If K is slice | False |