Gauss code |
O1O2O3O4U2O5U3U6U4O6U1U5 |
R3 orbit |
{'O1O2O3O4U2O5U3U6U4O6U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U4O6U1U6U2O5U3 |
Gauss code of K* |
O1O2O3U2O4O5U4U6U1U3O6U5 |
Gauss code of -K* |
O1O2O3U4O5U1U3U5U6O4O6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 -1 2 3 -1],[ 1 0 -2 0 3 3 0],[ 2 2 0 1 2 2 1],[ 1 0 -1 0 1 2 0],[-2 -3 -2 -1 0 0 -2],[-3 -3 -2 -2 0 0 -3],[ 1 0 -1 0 2 3 0]] |
Primitive based matrix |
[[ 0 3 2 -1 -1 -1 -2],[-3 0 0 -2 -3 -3 -2],[-2 0 0 -1 -2 -3 -2],[ 1 2 1 0 0 0 -1],[ 1 3 2 0 0 0 -1],[ 1 3 3 0 0 0 -2],[ 2 2 2 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,1,1,1,2,0,2,3,3,2,1,2,3,2,0,0,1,0,1,2] |
Phi over symmetry |
[-3,-2,1,1,1,2,0,2,3,3,2,1,2,3,2,0,0,1,0,1,2] |
Phi of -K |
[-2,-1,-1,-1,2,3,-1,0,0,2,3,0,0,0,1,0,1,1,2,2,1] |
Phi of K* |
[-3,-2,1,1,1,2,1,1,1,2,3,0,1,2,2,0,0,-1,0,0,0] |
Phi of -K* |
[-2,-1,-1,-1,2,3,1,1,2,2,2,0,0,1,2,0,2,3,3,3,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+3t |
Normalized Jones-Krushkal polynomial |
3z^2+23z+35 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+23w^2z+35w |
Inner characteristic polynomial |
t^6+50t^4+41t^2+4 |
Outer characteristic polynomial |
t^7+70t^5+75t^3+10t |
Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 6*K1*K2 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-64*K1**6 - 64*K1**4*K2**2 + 1248*K1**4*K2 - 4544*K1**4 + 480*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1216*K1**3*K3 - 192*K1**2*K2**4 + 480*K1**2*K2**3 + 224*K1**2*K2**2*K4 - 5744*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 10608*K1**2*K2 - 1344*K1**2*K3**2 - 64*K1**2*K3*K5 - 80*K1**2*K4**2 - 5388*K1**2 + 320*K1*K2**3*K3 - 576*K1*K2**2*K3 - 32*K1*K2**2*K5 + 64*K1*K2*K3**3 - 352*K1*K2*K3*K4 + 7688*K1*K2*K3 - 32*K1*K3**2*K5 + 1392*K1*K3*K4 + 104*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1264*K2**4 - 688*K2**2*K3**2 - 56*K2**2*K4**2 + 1304*K2**2*K4 - 4244*K2**2 + 536*K2*K3*K5 + 24*K2*K4*K6 - 64*K3**4 + 48*K3**2*K6 - 1992*K3**2 - 472*K4**2 - 84*K5**2 - 12*K6**2 + 4686 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {3, 5}, {2, 4}, {1}]] |
If K is slice |
False |