Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.742

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,0,1,3,2,4,0,2,1,2,1,1,2,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.742']
Arrow polynomial of the knot is: -12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.546', '6.591', '6.598', '6.666', '6.680', '6.742', '6.778', '6.805', '6.822', '6.824', '6.1129', '6.1512', '6.1647', '6.1678', '6.1705', '6.1847', '6.1857']
Outer characteristic polynomial of the knot is: t^7+78t^5+47t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.742']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 64*K1**4*K2**2 + 576*K1**4*K2 - 3328*K1**4 + 288*K1**3*K2*K3 - 896*K1**3*K3 + 96*K1**2*K2**2*K4 - 2976*K1**2*K2**2 - 544*K1**2*K2*K4 + 7704*K1**2*K2 - 832*K1**2*K3**2 - 32*K1**2*K3*K5 - 128*K1**2*K4**2 - 4708*K1**2 - 352*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5832*K1*K2*K3 + 1432*K1*K3*K4 + 200*K1*K4*K5 + 16*K1*K5*K6 - 304*K2**4 - 96*K2**2*K3**2 - 16*K2**2*K4**2 + 856*K2**2*K4 - 4036*K2**2 + 192*K2*K3*K5 + 16*K2*K4*K6 - 2020*K3**2 - 664*K4**2 - 104*K5**2 - 12*K6**2 + 4158
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.742']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20001', 'vk6.20086', 'vk6.21271', 'vk6.21368', 'vk6.27048', 'vk6.27147', 'vk6.28751', 'vk6.28836', 'vk6.38449', 'vk6.38552', 'vk6.40636', 'vk6.40749', 'vk6.45329', 'vk6.45448', 'vk6.47096', 'vk6.47190', 'vk6.56816', 'vk6.56891', 'vk6.57948', 'vk6.58029', 'vk6.61330', 'vk6.61417', 'vk6.62504', 'vk6.62574', 'vk6.66536', 'vk6.66599', 'vk6.67323', 'vk6.67390', 'vk6.69178', 'vk6.69247', 'vk6.69927', 'vk6.69988']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U6U3O6U5U4
R3 orbit {'O1O2O3O4U2O5U1U6U3O6U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5O6U2U6U4O5U3
Gauss code of K* O1O2O3U2O4O5U1U6U3U5O6U4
Gauss code of -K* O1O2O3U4O5U6U1U5U3O6O4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 3 2 -1],[ 3 0 0 2 4 2 2],[ 2 0 0 1 2 1 1],[-1 -2 -1 0 1 0 -1],[-3 -4 -2 -1 0 0 -3],[-2 -2 -1 0 0 0 -2],[ 1 -2 -1 1 3 2 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 0 -1 -3 -2 -4],[-2 0 0 0 -2 -1 -2],[-1 1 0 0 -1 -1 -2],[ 1 3 2 1 0 -1 -2],[ 2 2 1 1 1 0 0],[ 3 4 2 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,0,1,3,2,4,0,2,1,2,1,1,2,1,2,0]
Phi over symmetry [-3,-2,-1,1,2,3,0,1,3,2,4,0,2,1,2,1,1,2,1,2,0]
Phi of -K [-3,-2,-1,1,2,3,1,0,2,3,2,0,2,3,3,1,1,1,1,1,1]
Phi of K* [-3,-2,-1,1,2,3,1,1,1,3,2,1,1,3,3,1,2,2,0,0,1]
Phi of -K* [-3,-2,-1,1,2,3,0,2,2,2,4,1,1,1,2,1,2,3,0,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+50t^4+19t^2
Outer characteristic polynomial t^7+78t^5+47t^3+4t
Flat arrow polynomial -12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7
2-strand cable arrow polynomial -64*K1**6 - 64*K1**4*K2**2 + 576*K1**4*K2 - 3328*K1**4 + 288*K1**3*K2*K3 - 896*K1**3*K3 + 96*K1**2*K2**2*K4 - 2976*K1**2*K2**2 - 544*K1**2*K2*K4 + 7704*K1**2*K2 - 832*K1**2*K3**2 - 32*K1**2*K3*K5 - 128*K1**2*K4**2 - 4708*K1**2 - 352*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5832*K1*K2*K3 + 1432*K1*K3*K4 + 200*K1*K4*K5 + 16*K1*K5*K6 - 304*K2**4 - 96*K2**2*K3**2 - 16*K2**2*K4**2 + 856*K2**2*K4 - 4036*K2**2 + 192*K2*K3*K5 + 16*K2*K4*K6 - 2020*K3**2 - 664*K4**2 - 104*K5**2 - 12*K6**2 + 4158
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice True
Contact