Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.731

Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,0,1,2,2,3,1,1,1,1,0,1,1,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.731']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+53t^5+27t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.731']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 128*K1**4*K2 - 1920*K1**4 + 32*K1**3*K2*K3 - 320*K1**3*K3 + 32*K1**2*K2**2*K4 - 1792*K1**2*K2**2 - 288*K1**2*K2*K4 + 4408*K1**2*K2 - 224*K1**2*K3**2 - 64*K1**2*K4**2 - 2392*K1**2 - 192*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3016*K1*K2*K3 + 648*K1*K3*K4 + 72*K1*K4*K5 - 128*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 400*K2**2*K4 - 2134*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 1020*K3**2 - 316*K4**2 - 44*K5**2 - 2*K6**2 + 2178
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.731']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16554', 'vk6.16645', 'vk6.18150', 'vk6.18486', 'vk6.22953', 'vk6.23072', 'vk6.24605', 'vk6.25018', 'vk6.34954', 'vk6.35073', 'vk6.35377', 'vk6.35796', 'vk6.36748', 'vk6.37167', 'vk6.39409', 'vk6.41602', 'vk6.42523', 'vk6.42632', 'vk6.42850', 'vk6.43127', 'vk6.44016', 'vk6.44328', 'vk6.45985', 'vk6.47661', 'vk6.54801', 'vk6.55351', 'vk6.56248', 'vk6.57431', 'vk6.59229', 'vk6.59788', 'vk6.60848', 'vk6.62098', 'vk6.64783', 'vk6.64846', 'vk6.65613', 'vk6.65920', 'vk6.68081', 'vk6.68144', 'vk6.68684', 'vk6.68895']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4U6U2O6U5U3
R3 orbit {'O1O2O3O4U1U3O5U6U2O6U4U5', 'O1O2O3O4U1O5U4U6U2O6U5U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U2U5O6U3U6U1O5U4
Gauss code of K* O1O2O3U2O4O5U6U3U5U1O6U4
Gauss code of -K* O1O2O3U4O5U3U6U1U5O6O4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 2 0 2 -1],[ 3 0 2 3 1 2 2],[ 0 -2 0 1 0 1 0],[-2 -3 -1 0 -1 1 -2],[ 0 -1 0 1 0 1 0],[-2 -2 -1 -1 -1 0 -2],[ 1 -2 0 2 0 2 0]]
Primitive based matrix [[ 0 2 2 0 0 -1 -3],[-2 0 1 -1 -1 -2 -3],[-2 -1 0 -1 -1 -2 -2],[ 0 1 1 0 0 0 -1],[ 0 1 1 0 0 0 -2],[ 1 2 2 0 0 0 -2],[ 3 3 2 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,0,1,3,-1,1,1,2,3,1,1,2,2,0,0,1,0,2,2]
Phi over symmetry [-3,-1,0,0,2,2,0,1,2,2,3,1,1,1,1,0,1,1,1,1,-1]
Phi of -K [-3,-1,0,0,2,2,0,1,2,2,3,1,1,1,1,0,1,1,1,1,-1]
Phi of K* [-2,-2,0,0,1,3,-1,1,1,1,3,1,1,1,2,0,1,1,1,2,0]
Phi of -K* [-3,-1,0,0,2,2,2,1,2,2,3,0,0,2,2,0,1,1,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^6+35t^4+11t^2
Outer characteristic polynomial t^7+53t^5+27t^3+3t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**6 + 128*K1**4*K2 - 1920*K1**4 + 32*K1**3*K2*K3 - 320*K1**3*K3 + 32*K1**2*K2**2*K4 - 1792*K1**2*K2**2 - 288*K1**2*K2*K4 + 4408*K1**2*K2 - 224*K1**2*K3**2 - 64*K1**2*K4**2 - 2392*K1**2 - 192*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3016*K1*K2*K3 + 648*K1*K3*K4 + 72*K1*K4*K5 - 128*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 400*K2**2*K4 - 2134*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 1020*K3**2 - 316*K4**2 - 44*K5**2 - 2*K6**2 + 2178
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact