Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.720

Min(phi) over symmetries of the knot is: [-3,-2,-1,2,2,2,0,0,2,3,3,0,1,2,3,0,1,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.720']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+81t^5+95t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.720']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 192*K1**4*K2 - 3408*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 384*K1**3*K3 + 352*K1**2*K2**3 - 3968*K1**2*K2**2 - 416*K1**2*K2*K4 + 7816*K1**2*K2 - 1552*K1**2*K3**2 - 128*K1**2*K3*K5 - 112*K1**2*K4**2 - 4684*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 6992*K1*K2*K3 + 2328*K1*K3*K4 + 208*K1*K4*K5 - 640*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 1112*K2**2*K4 - 4110*K2**2 + 200*K2*K3*K5 + 8*K2*K4*K6 - 2552*K3**2 - 936*K4**2 - 116*K5**2 - 2*K6**2 + 4574
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.720']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16952', 'vk6.17195', 'vk6.20536', 'vk6.21935', 'vk6.23348', 'vk6.23643', 'vk6.27990', 'vk6.29455', 'vk6.35400', 'vk6.35821', 'vk6.39398', 'vk6.41589', 'vk6.42873', 'vk6.43152', 'vk6.45974', 'vk6.47648', 'vk6.55103', 'vk6.55360', 'vk6.57412', 'vk6.58585', 'vk6.59501', 'vk6.59797', 'vk6.62079', 'vk6.63059', 'vk6.64952', 'vk6.65160', 'vk6.66956', 'vk6.67815', 'vk6.68241', 'vk6.68384', 'vk6.69567', 'vk6.70262']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2U6U4O6U5U3
R3 orbit {'O1O2O3O4U1O5U2U6U4O6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5O6U1U6U3O5U4
Gauss code of K* O1O2O3U2O4O5U6U1U5U3O6U4
Gauss code of -K* O1O2O3U4O5U1U6U3U5O6O4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 2 2 -1],[ 3 0 1 3 2 2 2],[ 2 -1 0 3 1 2 1],[-2 -3 -3 0 0 1 -3],[-2 -2 -1 0 0 0 -2],[-2 -2 -2 -1 0 0 -2],[ 1 -2 -1 3 2 2 0]]
Primitive based matrix [[ 0 2 2 2 -1 -2 -3],[-2 0 1 0 -3 -3 -3],[-2 -1 0 0 -2 -2 -2],[-2 0 0 0 -2 -1 -2],[ 1 3 2 2 0 -1 -2],[ 2 3 2 1 1 0 -1],[ 3 3 2 2 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-2,1,2,3,-1,0,3,3,3,0,2,2,2,2,1,2,1,2,1]
Phi over symmetry [-3,-2,-1,2,2,2,0,0,2,3,3,0,1,2,3,0,1,1,-1,0,0]
Phi of -K [-3,-2,-1,2,2,2,0,0,2,3,3,0,1,2,3,0,1,1,-1,0,0]
Phi of K* [-2,-2,-2,1,2,3,-1,0,1,2,3,0,0,1,2,1,3,3,0,0,0]
Phi of -K* [-3,-2,-1,2,2,2,1,2,2,2,3,1,1,2,3,2,2,3,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+55t^4+45t^2+4
Outer characteristic polynomial t^7+81t^5+95t^3+10t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**6 + 192*K1**4*K2 - 3408*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 - 384*K1**3*K3 + 352*K1**2*K2**3 - 3968*K1**2*K2**2 - 416*K1**2*K2*K4 + 7816*K1**2*K2 - 1552*K1**2*K3**2 - 128*K1**2*K3*K5 - 112*K1**2*K4**2 - 4684*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 6992*K1*K2*K3 + 2328*K1*K3*K4 + 208*K1*K4*K5 - 640*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 1112*K2**2*K4 - 4110*K2**2 + 200*K2*K3*K5 + 8*K2*K4*K6 - 2552*K3**2 - 936*K4**2 - 116*K5**2 - 2*K6**2 + 4574
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact